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1. DNA methylation (bisulfate sequencing; genotyping microarray): Methylation of 

cytosines in CpG islands or other genomic DNA is associated with gene silencing.

2. Chromatin accessibility (DNase-seq; ATAC-seq): The genomic DNA region that is tightly 

bound by the nucleosomes is less accessible to transcription machinery and other regulatory 

proteins. Chromatin accessibility is regulated during cellular differentiation.

3. Histone modification (ChIP-seq): Chromatin is a dynamic structure that must respond to 

myriad stimuli to regulate access to DNA, and  chemical modification of histone is a 

major means by which the cell modulates nucleosome mobility and turnover. 

4. Chromatin organization (Hi-C): Spatial organization of chromatic regions is dynamic and 

may affect gene expression. Spatial (3-D) proximity of chromosomal loci can be 

experimentally determined. 

5. Non-coding RNA (RNA-seq): Both short and long non-coding RNA species are involved in 

epigenome regulation by (i) influencing expression and function of epigenetic regulators, 

(ii) recruiting epigenetic regulator and (iii) shaping 3D nuclear architecture. 

❖ Five key epigenomic components (and profiling methods)

❖ Why epigenomics?

• Human has many different types of cells, specialized for different functions, and each of these 

cells carries essentially the same genome in its nucleus. The differences among cells are 

mainly determined by how and when different sets of genes are turned on or off. 

• The transcriptional regulations are mediated by cis- and trans-elements. Epigenomic profiles 

reveal state of cis- and trans-regulatory elements for the cells. 



❖ All epigenomic profiling methods are available at single-cell level

Science 358: 69 (2017)



❖ Chromatin accessibility

S. Klemm, et al. Nature Reviews Genetics (2019)

• Open chromatin = more transcription

• Chromatin accessibility varies for different cell types, states, and activity



❖ Methods for measuring Chromatin accessibility

• Dnase-seq (using Dnase I) and ATAC-seq (using mutated hyperactiveTn5 transposase)

• Others are MNase-seq (using Endo/exonuclease Mnase) and NOME-seq (using Methyltransferase).

• Currently, ATAC-seq is the method of choice, because it requires much less DNA sample and much 

shorter preparation time than other methods.

• In a process called “tagmentation” (tag + fragmentation), Tn5 transposase cleaves and tags dsDNA 

with sequencing adaptors.

J. Buenrostro, et al. Curr Protoc Mol Biol(2015)



❖ Why (single-cell) chromatin accessibility?

• Gene expression programs are tightly controlled by the concerted action of TFs, chromatin 

modifiers, chromatic accessibility and other regulatory factors. Genome-wide epigenomic

analysis are therefore instrumental for determining key regulators of gene expression and 

refining gene regulatory network (GRN) models.

• Unbiased chromatin accessibility profiles allow to discover novel cis regulators (e.g., 

enhancers) and identifying master TFs with their activity profiles across cell states. 

• The vast majority of disease-associated SNPs lie outside of coding regions. Chromatic 

accessibility information is essential for relating noncoding genetic variation to regulatory 

mechanisms underlying disease.

• With pseudotemporal ordering based on single-cell chromatin accessibility profiles, 

asynchronous cells can be ordered by their developmental progression to identify the step-wise 

activation of key cis- and trans-effectors underlying cell differentiation and commitment.

• Before single-cell technologies available, ATAC-seq profiles for homogeneous cell 

population (e.g., cancer cells for distinct type; FACS-sorted immune cells for each type) 

suggested the importance of cell-type(state)-specific chromatin accessibility information in 

understanding disease-associated regulatory mechanisms.



▪ Chromatin accessibility landscape of primary 

human cancers Science 362:eaav1898, (2018)

• ATAC-seq for 23 cancer types, 410 tumor samples

• Peaks for non-coding regions might contain active 

regulatory elements, suggesting many novel 

enhancer elements.

• There are many cancer-type-specific peaks.

• Dimension reduction (e.g., tSNE) of ATAC-seq data 

using most variable peaks confirms cancer-type-

specific chromatin accessibility (e.g., active 

regulatory element).

• Integration with mutation data identify cancer-

relevant noncoding mutations that are 

associated with altered gene expression.



▪ Chromatin accessibility landscape of resting and stimulated immune cells 
Nature Genetics 51:1494 (2019)

• ATAC-seq for 25 types of immune cells at resting state and stimulated (activated) B, T, NK cells

• GWAS have identified many SNPs that contribute to the risk of autoimmunity. ~90% of these signals 

lie in noncoding regions and thus presumably act by altering gene regulation; however, only ~25% of 

them could be explained through eQTL (SNP associated with expression variation of a certain gene).

• It has been shown that some GWAS-eQTL overlap can remain hidden within stimulation-specific 

regulatory regions of immune cells, emphasizing the unique role of stimulation to autoimmunity.

• Dimension reduction (e.g., tSNE) of ATAC-seq data using most variable peaks from cells in a resting 

state shows clusters of major immune cell types.

• Overall, stimulation drives dramatic changes in the chromatin landscapes of B and T cells. The 

chromatin differences due to stimulation were nearly as large as differences between cell 

lineages (25% versus 32%, respectively).

• For rheumatoid arthritis, SNPs in accessible chromatin regions show much higher enrichment 

in stimulated cells compared with resting-state cells. Thus, we now can identify eQTL SNPs that 

were net detectable from immune cells at resting state.



❖ Single-cell ATAC sequencing

• The first bulk ATAC-seq was 

published in 2013 (Nature 

Methods 10:1213)

• The first scATAC-seq was 

published in 2015.

• Now >100 scATAC-seq papers 



Development of bulk ATAC-seq
Transposition of native chromatin for fast and sensitive epigenomic profiling of open 

chromatin, DNA-binding proteins and nucleosome position

Jason D. Buenrostro, et al. Nature Methods (2013)

Development of sciATAC seq (indexing)
Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing

Darren A. Cusanovich, et al. Science (2015)

Development of scATAC-seq (droplet)
Single-cell chromatin accessibility reveals principles of regulatory variation

Jason D. Buenrostro, et al. Nature (2015)

sciATAC seq of 15,000+ mouse forebrain cells
Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals 

cell-type-specific transcriptional regulation

Sebastian Prelssl, et al. Nature Neuroscience (2018)

sciATAC seq of 20,000+ Drosophila embryos cells The cis-regulatory dynamics of embryonic development at single-cell resolution

Darren A. Cusanovich, et al. Nature (2018)

sciATAC seq of 100,000+ adult mouse cells
A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility

Darren A. Cusanovich, et al. Cell (2018)

Development of Cicero (trajectory analysis)
Cicero Predicts cis-regulatory DNA Interactions from Single-Cell Chromatin Accessibility 

Data Hannah A. Pliner, et al. Molecular Cell (2018)

10x scATAC of 200,000+ PBMC & BCC cells
Massively parallel single-cell chromatin landscapes of human immune cell development and 

intratumoral T cell exhaustion Ansuman T. Satpathy, et al. Nature Biotechnology (2019)

scRNA + scATAC seq integration (Seurat)
Comprehensive Integration of Single-Cell Data

Tim Stuart , et al. Cell (2019)

Benchmark of scATAC-seq tools
Assessment of computational methods for the analysis of single-cell ATAC-seq data

Huidong Chen, et al. Genome Biology (2019)

chromVAR (TF motif)
chromVAR: inferring transcription-factor-associated accessibility from single-cell 

epigenomics data Alicia N. Schep, et al. Nature Methods (2017)

❖ Key articles for scATAC-seq research



❖ Data analysis tools

Tool name Article name Journal Year

1 SCRAT Single-cell regulome data analysis by SCRAT Bioinformatics May 2017

2 Dr.seq2 Dr.seq2: A quality control and analysis pipeline for parallel single cell transcriptome and epigenome data PLoS ONE July 2017

3 chromVAR chromVAR: inferring transcription-factor-associated accessibility from single-cell epigenomics data Nature Methods October 2017

4 scABC Unsupervised clustering and epigenetic classification of single cells (scABC) Nature Communications June 2018

5 BROCKMAN BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization BMC Bioinformatics July 2018

6 PRISM
A Cosine Similarity-based Method to Infer Variability of Chromatin Accessibility at the Single-Cell Level (PRI
SM)

Frontiers in Genetics August 2018

7 Cicero Cicero Predicts cis-regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data Molecular Cell September 2018

8 Scasat Classifying cells with Scasat, a single-cell ATAC-seq analysis tool Nucleic Acids Research October 2018

9 SIP SIP: An Interchangeable Pipeline for scRNA-seq Data Processing BioRxiv October 2018

10 fdapace Sparse functional data analysis accounts for missing information in single-cell epigenomics BioRxiv December 2018

11 Destin Destin: toolkit for single-cell analysis of chromatin accessibility Bioinformatics March 2019

12 ChromA
Characterizing the epigenetic landscape of cellular populations from bulk and single-cell ATAC-seq informat
ion

BioRxiv March 2019

13 snapATAC Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types BioRxiv April 2019

14 STREAM Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM Nature Communications April 2019

15 cisTopic cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data Nature Methods May 2019

16 EpiScanpy EpiScanpy: integrated single-cell epigenomic analysis BioRxiv May 2019

17 APEC APEC: an accesson-based method for single-cell chromatin accessibility analysis BioRxiv May 2019

18 genesorteR genesorteR: Feature Ranking in Clustered Single Cell Data BioRxiv June 2019

19 XenoCell XenoCell: classification of cellular barcodes in single cell experiments from xenograft samples BioRxiv June 2019

20 ChromSCape ChromSCape: a Shiny&R application for interactive analysis of single-cell chromatin profiles BioRxiv July 2019

21 rCASC rCASC: reproducible classification analysis of single-cell sequencing data GigaScience August 2019

22 scBFA scBFA: modeling detection patterns to mitigate technical noise in large-scale single-cell genomics data Genome Biology August 2019

23 scAEspy scAEspy: a unifying tool based on autoencoders for the analysis of single-cell RNA sequencing data BioRxiv August 2019

24 SCALE SCALE method for single-cell ATAC-seq analysis via latent feature extraction Nature Communications October 2019

25 DC3 DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data Nature Communications October 2019

26 scfind Fast searches of large collections of single cell data using scfind BioRxiv October 2019

27 scATAC-pro scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data BioRxiv October 2019

28 Garnett Supervised classification enables rapid annotation of cell atlases Nature Methods October 2019

29 AtacWorks AtacWorks: A deep convolutional neural network toolkit for epigenomics BioRxiv November 2019

30 dryclean Robust foreground detection in somatic copy number data BioRxiv November 2019

31 scOpen scOpen: chromatin-accessibility estimation of single-cell ATAC data BioRxiv December 2019

32 UniPath
UniPath: A uniform approach for pathway and gene-set based analysis of heterogeneity in single-cell epige
nome and transcriptome profiles

BioRxiv December 2019

33 Augur Cell type prioritization in single-cell data BioRxiv December 2019



❖ scATAC-seq data are represent as various ‘cell-by-feature’ matrix 

• After sequencing, the raw reads obtained in .fastq format for each single cell are mapped to a 

reference genome (by bowtie2), producing aligned reads in .bam format. 

• Finally, peak calling (by MACS2) and read counting return the genomic position and the read count 

files in. bed and .txt format, respectively. Data in these file formats is then used for downstream 

analysis.
• ATAC-seq peaks in bulk samples can 

generally be recapitulated in aggregated 

single-cell samples, but not every single 

cell has a fragment at every peak. 

• A cell-by-peak matrix can be constructed 

from single cells (e.g., by counting the 

number of reads at each peak for every 

cell).

• Other types of cell-by-feature matrix can 

be generated for downstream analysis: 

cell-by-TF matrix, cell-by-gene matrix, 

cell-by-gene_activity matrix

cells

1 0 1

1 1 2

peaks 1 2 1

0 0 1

1 1 0



❖ Challenges in scATAC-seq data analysis

• Single-cell chromatin studies are exceedingly sparse, as normal diploid cells have two genomic 

copies and thus 0, 1 or 2 reads are observed per locus per cell. Due to low copy numbers (diploid 

in humans), lead to inherent data sparsity (1–10% of peaks detected per cell) compared to 

transcriptomic (scRNA-seq) data (10–45% of expressed genes detected per cell).

• While most data analysis tools share upstream pre-processing steps (i.e., alignment, peak 

calling, and counting), they differ in obtaining a feature matrix for downstream analyses. 

• The potential feature set in scATAC-seq, which includes genome-wide regions of accessible 

chromatin, is typically 10–20× the size of the feature set in scRNA-seq experiments (which is 

defined and limited by the number of genes expressed). This larger feature set could be valuable 

in distinguishing a wider variety of cell populations and inferring the dynamics underlying 

cell organization into complex tissues.

Genome Biology 20:241 (2019)

❖ Benchmarking scATAC-seq tools for clustering Genome Biology 20:241 (2019)

• SnapATAC, Cusanovich2018, and cisTopic outperform other methods in separating cell 

populations of different coverages and noise levels in both synthetic and real datasets. 

• Notably, SnapATAC is the only method able to analyze a large dataset (> 80,000 cells).

• In addition, SnapATAC is easy to use and carry many different functions.

• Because of accuracy, scalability, and versatility, we recommend SnapATAC for pre-processing.



• An essential aspect of feature matrix construction is the selection of a set of regions to describe 

the data (e.g., putative regulatory elements such as peaks and promoters). 

• Most methods define regions based on peak calling from either a reference bulk ATAC-seq

profile or an aggregated single-cell ATAC-seq profile.

• Cusanovich2018 and SnapATAC segment the genomes into fixed-size bins (windows) and 

count features within each bin.

• Cusanovich2018 first creates pseudo-bulk clades by performing hierarchical clustering on the 

transformed matrix using the top frequently accessible windows. Then, peaks are called by 

aggregating cells within each pseudo-bulk clade.

▪ Define regions

➢ The feature matrix construction can be roughly summarized into four different modules:

(i) define regions, (ii) count features, (iii) transformation, (iv) dimensionality reduction

• Raw features within the defined regions are counted: Peaks, bins, k-mers, TF motifs, gene TSS.

• For cisTopic and Cusanovich2018, reads overlapping peaks are counted. For Cusanovich2018

and SnapATAC, reads overlapping bins are counted. Similarly, for chromVAR, reads overlapping 

TF motifs and k-mers are counted.

• If pre-defined genomic annotations such as coding genes are given, Gene Scoring and Cicero

use gene TSSs as anchor points to calculate gene enrichment scores based on reads nearby or 

just within peaks nearby.

▪ Count features



▪ Transformations

• To the initial raw feature matrix, different transformation methods can be performed. 

• Binarization of read counts is used by many tools including best performed ones. This step is 

based on the assumption that each site is present at most twice. Binarization is advantageous in 

alleviating technical noise arising from sequencing depth or PCR amplification artifacts. 

• SnapATAC convert the binary count matrix into a cell-pairwise Jaccard index similarity matrix.

• Cusanovich2018 normalizes the binary count matrix using the TF-IDF transformation. 

• Cicero weights feature sites by their co-accessibility, while Gene Scoring weights sites by a 

decaying function based on its distance to a gene TSS. → Gene activity score

• Both chromVAR and SnapATAC perform a read coverage bias correction to account for the 

influence of sample depth. chromVAR creates “background” peaks consisting of an equal number 

of peaks matched for both average accessibility and GC content to calculate bias-corrected 

deviation while SnapATAC uses a regression-based method to mitigate the coverage difference 

between cells. chromVAR compute z-scores to measure the gain or loss of chromatin accessibility 

across cells.

• In the final step before downstream analysis, several methods apply dimensionality reduction. This 

step can refine the feature space mitigating redundant features and potential artifacts and 

potentially reducing the computation time of downstream analysis. 

• PCA is the most commonly used method (used by SnapATAC, and Cusanovich2018). cisTopic uses 

latent Dirichlet allocation (LDA) to generate two distributions including topic-cell distribution and 

region-topic distribution. Choosing the top topics based on the topic-cell distribution reduces the 

dimensionality. 

▪ Dimensionality reduction



➢ Conclusions from benchmarking study (for clustering efficiency)

1. Peak-level or bin-level feature counting generally performs better. This may indicate that the 

complexity of gene regulatory circuits where precise enhancer elements may have distinct functions 

that cannot be sufficiently approximated by sequence context or proximity to gene bodies alone. 

2. Dimensionality reduction step generally helps the separation of cell types, since this step may 

help to remove the redundancy between a large number of raw features and to mitigate the effect of 

noise. 

3. The robustness of different methods to noise and coverage varies among different datasets. Among 

the top three methods, cisTopic is the most penalized by low coverage. 

4. Inappropriate transformations, such as log2 transformation and normalization based on region 

size as implemented in SCRAT, may impact negatively clustering performance.

5. Louvain (community detection-based clustering) method overall performs more consistently and 

accurately than others for scATAC-seq data.

Genome Biology 20:241 (2019)



snapATAC

Harmony
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Trajectory; Co-accessibility 

Motif/k-mer

Motif/k-mer
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❖ scATAC-seq data analysis software



❖ snapATAC Rongxin Fang, et al. bioRxiv (2019)

• The use of pre-defined accessibility peaks based on bulk data has at 

least three key limitations.

1. It requires sufficient number of single cell profiles to create robust 

aggregate signal for peak calling. 

2. The cell type identification is biased toward the most abundant cell 

types in the tissues. 

3. It lacks the ability to reveal regulatory elements in the rare cell 

populations which are underrepresented in the aggregate signal.

• SnapATAC does not require population-level peak annotation, and 

instead assembles chromatin landscapes by directly clustering cells 

based on the similarity of their genome-wide accessibility profile (profile 

based on uniform-sized bins that segmented the genome). 

• Binarization: Each bin has value “1” if one or more reads fall within 

that bin. Otherwise, value “0” is assigned → cell-by-bin binary matrix

• Feature selection: remove invariant features (e.g., remove top 5% 

bins and bins with 0 reads) 

• Binary vectors from all the cells is converted into a Jaccard index 

matrix. Because Jaccard Index can be influenced by sequencing 

depth, regression-based normalization procedure was applied to 

remove such confounding factor. 

• The normalized matrix is subject to Dimension reduction and 

significant components are selected for clustering analysis.



❖ Peak identification and downstream analysis

• Louvain clustering analysis groups cells with similar 

chromatin accessibility profiles.

• Peak Calling using MACS2: cells belonging to the same 

cluster are aggregated to create a representation of cell-

type specific regulatory landscape for identification of 

candidate cis-regulatory elements de novo. 

• Peak Occurrence Frequency Matrix: the frequency 

(number of cells out of the total) of a peak occurring in 

each cluster is calculated.

• Cell-by-Peak matrix: Merging peaks identified from 

each cluster, we create a reference list of regulatory 

elements. Using this reference map, we next create a 

cell-by-peak matrix.

• Motif analysis: identify overrepresented motif (or k-mer) 

within accessible regions for each cluster (cell type) 

using homer or chromVAR

• Pathway analysis: performed Genomic Region 

Enrichment Analysis (GREAT) to predict the function of 

each cluster.
cells

1 0 1

1 1 2

peaks 1 2 1

0 0 1

1 1 0

Cell-by-peak matrix



❖ snapATAC overview

• SnapTools (python)

• Index Reference Genome

• Fastq Alignment

• Create snap file from bam file

• Cell by Bin matrix

• SnapATAC (R)

• Barcode selection

• Cell-by-bin matrix: bmat

• Bin filtering

• Dimensionality reduction 

• Clustering 

• Visualization 

• Gene-based annotation / Seurat variable 

Cell-by-gene matrix: gmat

• SnapTools + MACS (python)

• Peak calling of each cluster 

• Create combined peaks (R)

• Cell-by-peak matrix: pmat

• SnapATAC (R)

• Identify differentially accessible regions(DAR)

• Motif analysis – master regulators using 

Homer & chromVAR motif variability analysis

• GREAT analysis for identifying biological 

pathways



❖ Preprocessing

▪ Barcode selection (cell selection)

• Calculate promoter ratio and log(UMI)

• Plot cells with promoter ratio and log(UMI)

• Filter cells with read count 1k ~ 100k & promoter read ratio: 30% ~ 80% (adjusted by the plot)



▪ Loading Cell-by-Bin matrix, and Binarization

▪ Quality Control: Bin filtering

• Blacklist genes (using Encode hg19 consensus signal artifact regions)

• Unwanted chromosome (mitochondrial chromosome)

• Top 5% bins that overlap with invariant features (house-keeping gene promoter)

• Low bin coverage: Cells with bin coverage less than 1000

▪ Dimension Reduction with DiffusionMaps

• Determine significant components (how many dimensions to include) 

▪ Clustering cells based on significant components

• Louvain clustering (graph-based clustering) 



❖ Cell identity annotation with scATAC-seq data

• Each cluster is annotated by meaningful biological label such as marker genes for cell types.

• However, definition of cell type is not clear. Furthermore, cells of the same cell type in different 

states may be detected in separate clusters. For these reasons, it is best to use the term “cell 

identities” rather than “cell types”.

• External sources of information of marker genes (e.g., databases and literature) can be used to 

annotate clusters.

▪ Reference-derived annotation: classification based on cell atlases 

▪ De novo annotation: clustering → label with marker genes

• There are tools for automated cell annotation by 

classifying individual cells to annotated 

reference cell atlas (e.g., singleR, scmap).

• With well-established cell 

atlases (e.g. HCA), this 

approach could be more 

powerful.

Nature Reviews Genetics 20: 257 (2019)

• Methods for scRNA-seq are similarly useful for annotating scATAC-seq datasets based on 

scATAC-seq-derived “gene activity scores” (using Cicero).



▪ Evaluation of Cell Type Annotation software on scRNA-seq Data

https://www.biorxiv.org/content/10.1101/827139v1

• Overall, Seurat, SingleR, CP, and SingleCellNet

performed well.

• Seurat works the best at annotating major cell 

types. 

• However, Seurat does have a major drawback at 

predicting rare cell populations, and it is suboptimal 

at differentiating similar cell types, while SingleR

and CP are much better in these aspects.

• Seurat, SingleR and CP are more robust against 

down-sampling. 



▪ scmap

• As large references such as the Human Cell Atlas (HCA) become available, it will be important to 

project cells from a new sample (e.g., disease tissues) onto the references to characterize 

differences in composition or detect new cell types. Conceptually, such projections are similar to 

the BLAST search, which quickly finds the closest match in a database of nucleotide or amino 

acid sequences.

• scmap can map individual cells from a query sample to cell types in the reference (scmap-

cluster) or to individual cells in a reference (scmap-cell). Scmap-cluster is more robust and 

faster than scmap-cell.

• In scmap-cluster, each cluster is represented by its centroid (a vector of the median value of 

the expression of each gene) and measure the similarity between a new cell, c, and each cluster 

centroid or cell. The nearest cluster can be searched for exhaustively because the number of 

clusters is typically much smaller than the number of cells in the reference. 

Concept behind scmap

Nature Methods 15: 321 (2018)

Nature Methods 15: 359 (2018) – first-in-class software



▪ SingleR

• De novo annotation of clusters of cells using known marker genes is performed manually. This 

strategy suffers from subjectivity and limits adequate differentiation of closely related cell 

subsets. We need unbiased cell type recognition of scRNA-seq.

• SingleR leverages reference transcriptomic datasets of pure cell types (human and mouse 

bulk RNA-seq samples) to infer the cell of origin of each of the single cells independently.

Nature Immunology 20: 163 (2019)



▪ Seurat v3: Canonical Correlation Analysis (CCA) + Mutual Nearest Neighbors (MNN) 

• CCA → L2 normalization of canonical correlation vectors → Project the datasets into a subspace 

defined by shared correlation structure across datasets.

• In the shared space, identify pairs of MNNs across reference and query cells. These should 

represent cells in a shared biological state across datasets (gray lines) and serve as anchors to 

guide dataset integration.

• While MNNs have previously been identified using L2-normalized gene expression, significant 

differences across batches can obscure the accurate identification of MNNs, particularly when the 

batch effect is on a similar scale to the biological differences between cell states. To overcome this, 

we first jointly reduce the dimensionality of both datasets using diagonalized CCA, then apply L2-

normalization to the canonical correlation vectors.

• We next search for MNNs in this shared low-dimensional representation. We refer to the resulting cell 

pairs as anchors, as they encode the cellular relationships across datasets that will form the basis for 

all subsequent integration analyses.

• Anchors can successfully recover matching cell states even in the presence of significant dataset 

differences, as CCA can effectively identify shared biological markers and conserved gene correlation 

patterns. However, cells in non-overlapping populations should not participate in anchors.

Cell 177: 1888 (2019)



• MNN aims to identify cells that are mutually nearest to one another in a space, defined by the gene 

expression profiles of the cells, allows the identification of biologically equivalent cells. 

• Once equivalent cells have been identified across data sets, this information can be used to compute a 

transformation of the original expression data that would remove data-set-specific expression patterns. 

• CCA aims to identify a set of variables that are maximally correlated between two data sets. By 

contrast, methods such as principal component analysis (PCA) aim to find orthogonal variables that 

maximize the variance explained in a single dataset.

• Next, these canonical correlation vectors are aligned across data sets using dynamic time warping (a 

method for locally stretching or compressing two 1D vectors to correct for lag in one vector relative to 

another), a nonlinear transformation that corrects for differences in cell population density.

Nature Reviews Genetics 20: 257 (2019)



▪ Cell type annotation using scRNA-seq reference and Seurat v3 

• Seurat v3 can transfer cell label from scRNA-seq-based reference cells to scATAC-seq cells via 

data integration. The integration with reference improves cell type annotation by scATAC-seq alone.

• We create pseudo-bulk ATAC-seq profiles by pooling together cells within each cell type. Each cell 

type showed enriched accessibility near canonical marker genes.

• Then, we identify overrepresented DNA motifs in cell-type-specific accessibility peaks (e.g., Mef2c 

motif overrepresented in PV-specific accessibility peaks and Mef2c expression is upregulated).
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❖ GREAT (Genomic Regions Enrichment of Annotations Tool) Nat. Biotech 28:495 (2010)

• Previously, functional significance analysis of cis-regulatory regions identified from ATAC (or 

ChIP, Hi-C) analysis across an entire genome used only proximal to genes and performs a 

gene-based hypergeometric test.

• However, associating only proximal binding events (for example, under 2–5 kb from the 

transcription start site) typically discards over half of the observed chromosomal regions.

• The standard approach to capturing distal events—associating each binding site with the one or 

two nearest genes—introduces a strong bias toward genes that are flanked by large intergenic 

regions (e.g., GO term ‘multicellular organismal development’ is associated with 14% of human 

genes, but the ‘nearest genes’ approach associates >33% of the genome with these genes). 

• GREAT associates genomic regions with genes by defining a ‘regulatory domain’ for each 

gene in the genome. 

• GREAT assigns each gene a regulatory domain consisting of a basal domain that extends 5 

kb upstream and 1 kb downstream from its transcription start site (denoted below as 5+1 kb), 

and an extension up to the basal regulatory domain of the nearest upstream and downstream 

genes within 1 Mb.

• Given a set of input genomic regions and an ontology of gene annotations, GREAT computes 

ontology term enrichments using a binomial test that explicitly accounts for variability in gene 

regulatory domain size by measuring the total fraction of the genome annotated for any given 

ontology term and counting how many input genomic regions fall into those areas.

• Therefore, the longer the regulatory domain of any gene—and, by extension, of any ontology 

term—the greater the expected number of regions associated with this term by chance. The 

binomial statistic markedly reduces the number of false positive enriched terms even when 

very large regulatory domains are used.



a. Previous methods 

associates only 

proximal binding 

events with genes and 

performs a gene-list 

test of functional 

enrichments using 

hypergenometric

test. 

b. GREAT’s binomial 

approach over 

genomic regions uses 

the total fraction of the 

genome associated 

with a given ontology 

term (green bar) as 

the expected fraction 

of input regions 

associated with the 

term by chance.

Nat. Biotech 28:495 (2010)



❖ STREAM (single-cell trajectories reconstruction, exploration and mapping)

a. It uses cell-by-k-mer matrix with z-scores calculated from chromVAR. Use top PCs for the trajectory analysis

b. Subway map plot of mouse hematopoietic cells.

c. It identifies significant 7-mers for each branch. These 7-mers are then mapped to known TF motifs. 

Nat. Comm 10:1903 (2019)



❖ Cicero (co-accessibility analysis)

• Cicero aims to identify all pairs of co-accessible sites. 

• Because of the sparsity of single-cell data, cells must be aggregated by similarity to allow robust 

correction for various technical factors in the data. Cicero does this using a k-NN approach which 

creates overlapping sets of cells. Cicero constructs these sets based on a reduced dimension 

coordinate map of cell similarity, for example, from a tSNE or DDRTree map.

• First, groups of highly similar cells are sampled using the clustering or pseudotemporal

ordering, and their binary profiles are aggregated into integer counts. 

• Cicero computes the raw covariances between each pair of sites within overlapping windows of 

the genome. Within each window, Cicero estimates a regularized correlation matrix using the 

graphical LASSO, penalizing pairs of distant sites more than proximal sites. 

• These overlapping covariance matrices are ‘‘reconciled’’ to produce a single estimate of the co-

accessibility across groups of cells. 

• Co-accessibility network can be visualized.

• Often, it is useful to compare Cicero connections to other datasets with similar kinds of links. For 

example, you might want to compare the output of Cicero to ChIA-PET ligations. To do this, 

Cicero includes a function called compare_connections.

• User can extract modules of co-

accessibility networks by first specifying a 

minimum co-accessibility score and then 

using the Louvain community detection 

algorithm on the subgraph induced by 

excluding edges below this score.

Molecular Cell 71:858 (2018)





❖ Cicero (single-cell accessibility trajectories) Molecular Cell 71:858 (2018)

• The second major function of the Cicero is to extend Monocle for use with scATAC-seq data. 

• To overcome sparsity of single-cell chromatin accessibility data is the sparsity, nearby peaks 

are aggregated. The function aggregate_nearby_peaks finds sites within a certain distance of 

each other and aggregates them together by summing their counts. Distance parameter can be 

adjusted by the density of the data (e.g., 1kb-10kb).

• To order the cells by progress through differentiation, we determined which aggregated peaks 

were relevant to the time course by fitting the following model:

Where Mi is the mean of a negative binomially distributed random variable for the number of 

reads overlapping the aggregate region i, T encodes the times and S is the total number of 

accessible sites in each cell. We compared this full model to the following reduced model by 

likelihood ratio test.

• Sites determined by this method to be time dependent and which were accessible in less than 

10% of cells were then used to reconstruct the pseudotime trajectory using Monocle.

• To visualize accessibility across pseudotime, cicero first grouped cells at similar positions in 

pseudotime by k-means clustering along the pseudotime axis (k = 10). These clusters were 

further subdivided such into groups containing at least 50 and no more than 100 cells. 

• Next, the binary accessibility profiles of the cells in each 

group are aggregated into a matrix A, so that Aij contains 

the number of cells in group j for which DNA element i

is accessible. The average pseudotime and average 

overall cell-wise accessibility for cells in each group j are 

preserved for use during differential analysis.



❖ Two approaches to connect scRNA-seq and scATAC-seq

Nature Biotechnology 37:1421 (2019)

a. Integration-based multi-omics approach. scRNA-seq and scATAC-seq data from same tissue 

are integrated (e.g., A dataset on healthy cells is used as a reference to decipher cancer-specific 

mechanisms in the leukemia dataset)

b. Multimodal single-cell omics profiling approach. Both scRNA-seq and scATAC-seq data are 

generated from the same cells (nuclei). Lower throughput and no commercial platforms available.



• Cell identity annotation: Integrated gene expression and chromatin accessibility data may 

improve cell identity annotation. 

• Reconstruction of regulatory networks: Joint analysis of transcriptomics and chromatin 

accessibility using the integration methods can reveal the existence of novel cell states and 

enable to connect TF activity and enhancer elements that underlie those states.

• Dynamic analysis of regulatory network: Manifold alignment for inferring a shared pseudotime

latent variable can reveal connections among transcriptomics and epigenetic changes and the 

underlying regulatory mechanisms driving dynamic processes such as differentiation, 

development and tumorigenesis.

❖ Motivation for integration of scRNA-seq and scATAC-seq data

Nature Biotechnology 36:411 (2018)

❖ Data integration

• The differing environments experienced by the cells can have an effect on the measurement of 

the transcriptome. The resulting effects exist on multiple levels: between groups of cells in an 

experiment, between experiments performed in the same laboratory or between datasets 

from different laboratories. Correction for effects between experiments or between datasets 

is considered as data integration.

• Data integration can be applied for multimodal single-cell data analysis (e.g., scRNA-seq data 

and scATAC-seq data from the same sample). Diverse single-cell technologies each measure 

distinct elements of cellular identity and are characterized by unique sources of bias, sensitivity, 

and accuracy. As a result, measurements across datasets may not be directly comparable. 

• Non‐linear approaches for data integration methods such as Canonical Correlation Analysis 

(CCA; Butler et al, 2018), Mutual Nearest Neighbors (MNN; Haghverdi et al, 2018), and 

Harmony (Korsunsky et al, 2019) have been developed to overcome this issue. 



▪ Seurat v3: Canonical Correlation Analysis (CCA) + Mutual Nearest Neighbors (MNN) 

• CCA → L2 normalization of canonical correlation vectors → Project the datasets into a subspace 

defined by shared correlation structure across datasets.

• In the shared space, identify pairs of MNNs across reference and query cells. These should 

represent cells in a shared biological state across datasets (gray lines) and serve as anchors to 

guide dataset integration.

• While MNNs have previously been identified using L2-normalized gene expression, significant 

differences across batches can obscure the accurate identification of MNNs, particularly when the 

batch effect is on a similar scale to the biological differences between cell states. To overcome this, 

we first jointly reduce the dimensionality of both datasets using diagonalized CCA, then apply L2-

normalization to the canonical correlation vectors.

• We next search for MNNs in this shared low-dimensional representation. We refer to the resulting cell 

pairs as anchors, as they encode the cellular relationships across datasets that will form the basis for 

all subsequent integration analyses.

• Anchors can successfully recover matching cell states even in the presence of significant dataset 

differences, as CCA can effectively identify shared biological markers and conserved gene correlation 

patterns. However, cells in non-overlapping populations should not participate in anchors.

Cell 177: 1888 (2019)



▪ LIGER (linked inference of genomic experimental relationships)

A. LIGER identifies shared cell types across individuals, species, and multiple modalities as well as 

dataset-specific features, offering a unified analysis of heterogeneous single-cell datasets.

B. LIGER employs iNMF to learn a low-dimensional space in which each cell is defined by one set of 

dataset-specific factors, or metagenes. Each factor often corresponds to a biologically 

interpretable signal—like the genes that define a particular cell type. A tuning parameter λ allows 

adjusting the size of dataset-specific effects to reflect the divergence of the datasets being analyzed.

C. After performing iNMF, we assign each cell a label based on the maximum factor loading and 

then build a shared factor neighborhood graph, in which we connect cells that have similar factor 

loading patterns, to prevent the spurious integration of divergent cell types across datasets (such as 

the yellow cells shown).

Cell 177: 1873 (2019)



▪ NMF (nonnegative matrix factorization)

https://blog.acolyer.org/2019/02/18/the-why-and-how-of-nonnegative-matrix-factorization/

• NMF approximates a matrix X with a low-rank matrix approximation such that X ≈ WH.

• The columns of W are the basis vectors, ‘building blocks’ from which we can reconstruct 

approximations to all of the original data points.

• The rows of H are coefficient vectors, which describe how strongly each ‘building block’ is 

present in the data.

• Each element in W and H must be ≥ 0. Thus, a key feature of NMF is the ability to identify 

nonsubtractive patterns that together explain the data as a linear combination of its basis vectors. 

• NMF can automatically extract sparse and easily interpretable factors.

• In other words, NMF decomposed original data (with original large dimension) into weighted 

sum of building blocks (with reduced dimension).



▪ NMF example for image processing

• For image of a face containing p pixels, and squash the data into a single vector such that 

the ith entry represents the value of the ith pixel. The columns of W can be interpreted as images 

(the basis images), and H tells us how to sum up the basis images in order to reconstruct an 

approximation to a given face.

• In the case of facial images, the basis 

images are features such as eyes, 

noses, moustaches, and lips, while 

the columns of H indicate which feature 

is present in which image.

• It’s difficult to interpret what it means for 

a face to have a “negative” component.

▪ NMF example for text mining

• In text mining, the bag-of-words matrix: row corresponds to a word, and column to a document. 

The columns of W can be interpreted as basis documents (bags of words), which 

represent topics! Sets of words found simultaneously in different documents. H tells us how to sum 

contributions from different topics to reconstruct the word mix of a given original document.

• Therefore, given a set of documents, NMF identifies topics and simultaneously classifies the 

documents among these different topics (i.e., decompose each document into a weighted sum of 

topics). We cannot interpret what it means to have a “negative” weight of the food topic.



jNMF: Nucleic Acids Research 40:9379 (2012)

iNMF: Bioinformatics 32: 1 (2016)▪ Joint NMF and integrative NMF

• The jNMF can be described as multiple NMFs subject to a shared factor matrix. It can detect 

coordinated activity across multiple genomic variables in the form of multi-dimensional 

modules. This serves as a useful preliminary step to reduce the dimensionality of the problem.

• In multiple datasets, the signal of interest is typically common among all sources (homogeneous), 

while extraneous effects tend to differ across sources (heterogeneous). 

• While jNMF is very effective for detecting homogeneous effects, its factorization structure leaves 

no room for heterogeneous approximations. As a result, jNMF is sensitive to random noise and 

confounding effects, because they typically differ in structure across sources.

• While jNMF considers homogeneous effects, iNMF additionally considers heterogeneous effects. 

• The iNMF separate the homogeneous and heterogeneous effects among the sources to extract 

the coordinated signal from extraneous noise via a partitioned factorization structure that captures 

homogeneous and heterogeneous effects. 

(a) Multi-dimensional modules across three different data sources. Scenario 2 contains the same data with added 

random noise and confounding effects. (b) The modules are clearly detected by both methods in Scenario 1 but only 

by iNMF in Scenario 2.



▪ Harmony is a fast and memory efficient tool.

• PCA embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in 

this reduced space and runs an iterative algorithm to adjust for dataset specific effects.

• a, Harmony uses soft clustering to assign cells to potentially multiple clusters, to account for smooth 

transitions between cell states. Clusters serve as surrogate variables, rather than discrete cell types.

• b, Harmony calculates a global centroid and dataset-specific centroids for each cluster.

• c, Within each cluster, Harmony calculates a correction factor for each dataset based on the 

centroids. Cluster-specific correction factors correspond to individual cell-type and cell-state 

specific correction factors. In this way, Harmony learns a simple linear adjustment function.

• d, Finally, Harmony corrects each cell with a cell-specific factor: a linear combination of dataset 

correction factors weighted by the cell’s soft cluster assignments made in step a. Since each cell 

may be in multiple clusters, each cell has a potentially unique correction factor.

• Harmony repeats steps a to d until convergence. The dependence between cluster assignment and 

dataset diminishes with each round. 
Nature Methods 16: 1289 (2019)

30-200 times 

faster, 

30-50 times 

less memory

than 

CCA/MNN



▪ Comparison of 14 batch-effect correction methods for scRNA-seq data

Genome Biology 21: 12 (2020)



▪ Benchmark of batch-effect correction methods for scRNA-seq data

Genome Biology 21: 12 (2020)

• Benchmarking on 9 scRNA-seq datasets with different sources and technologies.

• Based on rank score, memory usage, and runtime, Harmony, LIGER, Seurat 3 were recommended.


