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Towards the biogeography of prokaryotic 
genes
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Daniel R. Mende3,7, Askarbek Orakov3, Ivica Letunic8, Falk Hildebrand3,9,10, Thea Van Rossum3, 
Sofia K. Forslund3,11,12, Supriya Khedkar3, Oleksandr M. Maistrenko3, Shaojun Pan1,2, 
Longhao Jia1,2, Pamela Ferretti3, Shinichi Sunagawa3,13, Xing-Ming Zhao1,2, 
Henrik Bjørn Nielsen14, Jaime Huerta-Cepas3,4 ✉ & Peer Bork3,15,16,17 ✉

Microbial genes encode the majority of the functional repertoire of life on earth. 
However, despite increasing efforts in metagenomic sequencing of various habitats1–3, 
little is known about the distribution of genes across the global biosphere, with 
implications for human and planetary health. Here we constructed a non-redundant 
gene catalogue of 303 million species-level genes (clustered at 95% nucleotide 
identity) from 13,174 publicly available metagenomes across 14 major habitats and use 
it to show that most genes are specific to a single habitat. The small fraction of genes 
found in multiple habitats is enriched in antibiotic-resistance genes and markers for 
mobile genetic elements. By further clustering these species-level genes into 32 
million protein families, we observed that a small fraction of these families contain the 
majority of the genes (0.6% of families account for 50% of the genes). The majority of 
species-level genes and protein families are rare. Furthermore, species-level genes, 
and in particular the rare ones, show low rates of positive (adaptive) selection, 
supporting a model in which most genetic variability observed within each protein 
family is neutral or nearly neutral.

Metagenomic shotgun sequencing enables quantification of molecu-
lar functions in environmental samples, often enabled by gene cata-
logues, which combine information from multiple local assemblies4. 
Such catalogues have been used for the human gut4, as well as for 
other host-associated5,6 and environmental habitats1,3. More recently, 
increased sequencing depth has enabled more complete genome assem-
bly (metagenome-assembled genomes (MAGs)), providing contextual 
information on genes7. However, despite the increasing amount of infor-
mation on genes and their known ability to cross species and habitat bar-
riers (affecting human health8), a comprehensive assessment of the gene 
distribution across the global biosphere has not yet been performed.

The Global Microbial Gene Catalogue
Here we integrate metagenomes and complete genomes, surveying 
prokaryotic genes across habitats to gain an understanding of the global 
distribution of genes and the molecular functions they encode. We col-
lated data from 14 habitats (both host-associated and environmental; 

Fig. 1) in an integrated, consistently processed, non-redundant Global 
Microbial Gene Catalogue (GMGCv1).

GMGCv1 was derived from 13,174, publicly available, high-quality 
metagenomes (Methods, Supplementary Tables 1, 2). The underlying 
samples were annotated with their respective habitat by semi-manual 
curation. We assembled contigs and predicted open reading frames 
(ORFs) from each metagenome, resulting in 2,007,736,046 ORFs 
(Methods, Extended Data Fig. 1, Supplementary Table 3). To broaden 
the coverage of our catalogue, we included 312,020,843 ORFs from 
84,029 high-quality genomes from the proGenomes2 database9. Using 
a graph-based redundancy removal algorithm (Methods), the result-
ing 2,319,756,889 sequences were, as in previous habitat-specific gene 
catalogues1,4–6, clustered at 95% nucleotide identity—a threshold that 
roughly corresponds to species boundaries10 (Extended Data Fig. 2)—
resulting in 302,655,267 clusters. A single sequence from each cluster 
was retained, representing all the nucleotide variants at 95% nucleotide 
identity—this corresponds to one copy of a particular gene per species, 
which is hereafter referred to as the ‘unigene’.
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To be able to generalize on global gene distribution properties, we 
also grouped sequences more broadly using a homology-based cluster-
ing approach11, on the basis of statistically significant sequence similar-
ity (e-value < 10−³; Methods) and four additional thresholds of amino 
acid identity (>90%, >50%, >30% and >20%). Requiring a minimum of 
90% identity represents a strict, yet common, cut-off in protein data-
bases12 and led to 210,478,083 unique protein clusters, while consider-
ing all statistically significant homologues with at least 20% amino acid 
identity resulted in 31,992,232 very broadly defined protein families.

An inevitable limitation of current metagenomics is that most 
assembled contigs are short relative to the size of ORFs, leading to 
many incomplete ORFs. As some analyses may benefit from a stricter 
emphasis on the quality of individual sequences (at the cost of lower 
coverage) and as 68.5% of the unigenes in GMGCv1 are predicted to be 
incomplete ORFs, we created a version of the catalogue including only 
complete ORFs and also built operationally defined protein families at 
different stringencies from them (https://gmgc.embl.de).

Both the inclusion of incomplete ORFs and the different operational 
protein family definitions can potentially affect functional and phylo-
genetic interpretations. Therefore, while we focus here on the broadest 
operational protein family definition (statistically significant sequence 

similarity, with at least 20% amino acid identity, including all ORFs), 
all our observations are robust across the several thresholds tested as 
well as to the inclusion of incomplete ORFs (Supplementary Table 4).

The majority of species-level unigenes in GMGCv1 were included in a 
tiny fraction of large protein families (the 0.6% largest protein families 
contain half of the species-level unigenes (Fig. 1d)). As a case in point for the 
robustness of the results with regard to parameter definitions, this fraction 
changes only slightly when exclusively considering complete ORFs (0.5%) 
or choosing a stricter definition of protein family (for example, 0.9% at 
the 50% clustering cut-off; Supplementary Table 4). The large amount of 
genetic diversity observed in GMGCv1 is thus mostly owing to diversifica-
tion within protein families, rather than de novo creation of genes.

We next attempted to put the genes into genomic context and pro-
duced 278,629 MAGs. Even without removing low-quality assemblies 
(Methods, Supplementary Table 5), these MAGs contain only 40 mil-
lion species-level unigenes, compared with the 303 million in the full 
catalogue. Yet—in agreement with previous reports7—this MAG subset 
is sufficient for mapping short reads from well-studied habitats at high 
rates, as MAGs preferentially capture higher-abundance genes (in the 
well-studied human gut metagenome, 95.3% of reads map to MAGs, but 
42.5% of unigenes do not; Extended Data Figs. 3, 4).
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Fig. 1 | Global Microbial Gene Catalogue, version 1. a, Metagenomes from 14 
different habitats (marker size represents total number of short reads) were 
assembled and ORFs were extracted. These, combined with ORFs from 
proGenomes2, were clustered to form species-level unigenes, protein clusters 
and protein families (Methods). b, Sharing of unigenes between habitats is 
minimal, with the exception of sharing between mammalian gut microbiota. 
The width of each ribbon represents the average abundance of the shared 
genes in the habitat on the left. The widest ribbon connects the cat gut to the 
human gut and represents the fact that 58.0% of the reads in cat gut 
microbiomes map to genes shared with the human gut. c, The unigene 

accumulation curves show that some habitats reach diminishing returns per 
sample, whereas others (for example, marine and soil) are still under-sampled 
(Extended Data Fig. 1). Inset, for the human gut, the curve saturates for the 
most prevalent genes. However, rare unigenes, including sample-specific ones, 
are still being discovered. d, The largest protein family contains 73,979 
unigenes. However, the size distribution is long-tailed and half of all unigenes 
are contained in only 203,431 (0.6%) families (those containing ≥239 
species-level unigenes), while 80% of protein families consist of only one or two 
genes, encompassing slightly less than 8% of the total unigene pool.
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Most genes are habitat-specific
Whereas MAGs are usually built per sample or per habitat, the global 
microbial gene catalogue enabled us to identify genes that are shared 
between habitats. As the species-level unigenes represent multiple 
sequences (with nucleotide identity greater than 95%), they may repre-
sent genes from multiple habitats (‘multi-habitat genes’). These could 
be contained in species thriving in multiple habitats or be part of mobile 
elements, that is, genes that can be transferred horizontally between 
genomes and across habitat boundaries.

Only 18,145,135 species-level unigenes (5.8% of the total, P < 10−38, 
permutation test; Methods) are multi-habitat genes (Fig. 1b, Extended 
Data Fig. 5). This is consistent with findings that species tend to adapt 
to their environments13 and that in host-associated microbiomes, con-
specific strains contain host-specific genes6,14.

To disentangle the mechanisms by which genes traverse habitat bound-
aries (that is, with entire species or with mobile elements), we first looked 
for unigenes associated with mobile elements (Methods) and found 
that they are indeed more than twice as likely to be in multiple habitats 
(156,738 out of 1,182,749 (13.3%), P < 10−38, Fisher’s exact test; Extended 
Data Fig. 6) than the average unigene (5.8%). Antibiotic-resistance genes 
(ARGs)—which are thought to be frequent cargo of mobile elements8—
were, also as expected, more likely than other unigenes to be present 
in multiple habitats (329,857 out of 3,208,187 ARGs (10.3%) P < 10−38, 
Fisher’s exact test; Extended Data Fig. 6, Methods). To quantify species 
overlap between habitats, taking into account that many species are 
not yet known, we constructed metagenomic species (MGSs) for each 
habitat (Methods) as proxies for species15 with reliable habitat informa-
tion. Overall, 7,443 MGSs were built, out of which only 1,099 are shared 
between habitats, consistent with the sharing patterns observed for 
individual unigenes (Extended Data Fig. 5, cf. Fig. 1b). As expected, species 
are more likely to be shared between similar environments (Extended 
Data Fig. 7); for example, the different mammalian gut habitats share 
many MGSs (786 of the 1,099 that are shared).

Richness patterns are habitat-specific
To investigate the presence of conspecific genes in each sample, we used 
the richness of universal, single-copy genes16 to measure taxonomic 

richness and compared it to overall unigene richness (Methods). We 
observed distinct average number of species-level unigenes per spe-
cies in each sample (Fig. 2a, P < 10−38, Kruskal–Wallis test). The marine 
and soil environments show a mixture of multiple sub-patterns. In the 
case of the marine samples, these sub-patterns correspond to distinct 
ocean depths, especially when comparing shallow samples to those 
collected in deeper water that is inaccessible to sunlight1, whereas 
the differences in soil environments follow differences in acidity and 
moisture (Extended Data Fig. 8). Thus, the number of unigenes per 
species present in a metagenome emerged as an identifying feature 
of a well-defined habitat.

To test whether the observed unigene richness was driven primarily 
by communities containing multiple orthologous unigenes (assumed 
to be performing the same metabolic function17) or a variety of func-
tional groups, we calculated the ratio of protein family richness to 
species-level unigene richness as a proxy for functional redundancy, 
and observed clear differences between habitats (Fig. 2b). We further 
tested the habitat specificity by building a classifier that predicts the 
habitat of each sample using only four descriptors (taxonomic, phylo-
genetic, unigene and protein family richness, after rarefaction to con-
trol for differences in sequencing depth; Methods). By cross-validation, 
we estimated the accuracy of this classifier across the 14 habitats at 
86.1% (controlling for the class size imbalance by downsampling habi-
tats to a maximum of 200 samples, so the largest habitats represent at 
most 11.8% of the dataset; Methods). Functional redundancy, whereby 
multiple organisms encode the same function, has been described 
in multiple environments18. Although it falsifies simplistic models in 
which each metabolic niche is occupied by a single species, there is 
still no consensus on the processes that explain it or its implications18. 
From our data, we conclude that the functional redundancy within 
each environment is tightly connected to the habitat within which the 
community develops, consistent with observations on pangenomes19. 
Thus, general models of functional redundancy will need to incorporate 
habitat-specific parameters.

Most genes are rare
Having established that functional redundancy and the majority of 
genes are habitat-specific, we investigated how frequent unigenes 
are in metagenomes. We observed that the prevalence of species-level 
unigenes follows a power law, with differing parameters for each habitat 
(Fig. 3), clearly showing that most genes have low prevalence. In fact, 
if we consider genes detected in 10 or fewer samples (out of 13,174 
analysed, so less than 0.1%) as rare genes, then most unigenes in the 
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GMGCv1 are rare (54.7% of genes, with similar results when considering 
broader clustering levels; Extended Data Fig. 9, Supplementary Table 4).

These frequency distributions in the form of power laws are expected 
under the assumption of neutral (or nearly neutral) evolution20 and 
describe our data well (for the human gut, the Pearson correlation 
between theoretical fit and observed data for unigenes is 0.997, 
P = 9.7 × 10−112, n = 7,059; Supplementary Table 6, Methods).

In agreement with this model, the vast majority of protein families 
(designed to include distant homologues; Methods), consist of rare, 
low-abundance clusters around species-level unigenes with no further 
homologues (Fig. 1d, Extended Data Fig. 10). Genes without detectable 

homologues are expected to have little (if any) effect on the fitness of 
the organisms—as has been observed for fully sequenced genomes21 
and should hold true in the environmental context.

Owing to the operon structure, functionality can be inferred by 
the co-occurrence of neighbouring genes22—we therefore measured 
the conservation of gene order and pathway neighbourhood across 
prevalence classes. Rare species-level unigenes appear indeed less 
functionally interacting than prevalent ones (Fig. 4a), consistent with 
rare genes being under fewer evolutionary constraints.

We then investigated whether our data are compatible with a neutral 
model of evolution by analysing sequence variation. Neutrality would 
imply that most observed genetic differences have (almost) no effect 
on fitness and therefore are not due to adaptation (positive selection) 
to particular niches, although purifying (negative) selection may still 
be active23. As selection operates differently between protein families24, 
we tested for positive (adaptive) selection within each of our protein 
families (Methods). We found that the vast majority of unigenes does 
not show evidence of positive selection (Fig. 4b).

Yet, we observed that rare unigenes are much less likely (4%) than 
prevalent ones (up to 10%) to be adaptive (Fig. 4b). To guard against 
possible confounding effects of differences in evolutionary speed and 
prevalence between species as well as for possible technical issues, we 
used only unigenes from 5,126 well-annotated Escherichia coli genomes 
included as part of GMGCv1 and obtained a very similar correlation of 
increased positive selection and gene prevalence (Fig. 4b). Moreover, 
the available number of E. coli genomes in GMGCv1 was sufficient to 
test for selection at each site, and indeed this showed that sites in rare 
E. coli unigenes were under less detectable selective pressure than 
those in more prevalent ones (Fig. 4c).

Within a single genome, however, most genes are neither under 
low selection pressure25 nor rare. In the 5,126 E. coli genomes, only 
2.8% ± 1.7% (mean ± s.d.) of the genes in each genome are rare (that is, 
they occur in 10 or fewer of the metagenomes in our collection). Yet 
the reservoir of E. coli strains in different habitats is vast, correspond-
ing to the observation that the pangenome of E. coli, like that of most 
other bacteria, is open26, and thus its genomes will collectively contain 
a huge number of rare genes.

Although we cannot quantify the relative contribution of ecological and 
evolutionary processes to the observed patterns27 or prove nearly neutral 
evolution for rare genes, as our sampling and sequencing depth is biased 
against very rare genes, the observed correlations point to such a model 
and indicate that we might still be underestimating the excess of rare genes.

Thus, as costs of sequencing continue to decrease, it seems feasible 
that we will be able to capture all abundant prokaryotic species on 
earth, as this goal appears almost achieved for well-studied habitats 
such as the human gut. Given our data, this even seems feasible for 
habitats, such as soil, with very high biodiversity. However, owing to the 
vast amount of rare, habitat-specific and perhaps even region-specific 
genes, as well as a probable turnover process of de novo gene creation, 
modification and extinction, considerable parts of the global gene pool 
will probably never be captured.
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Methods

Selection of genomes and metagenomes
Metagenomes were downloaded from the European Nucleotide Archive 
(ENA)1,5,15,28–59. Only samples that were public on 1 January 2017 were 
used. Metagenomes were identified using the following two criteria: 
(1) samples tagged with a taxonomic ID that is either 408169, the taxo-
nomic ID for metagenome, or a taxonomic ID that is a descendent of 
408169 in the taxonomic tree; and (2) experiments where the library 
source field was set to “METAGENOMIC”. Samples containing at least 1 
million reads, with an average length of at least 75 base pairs, and having 
been sequenced on an Illumina instrument, were selected for further 
analysis. Samples were then grouped by ENA project and all projects 
with at least 100 samples were considered. Manual inspection led to the 
rejection of five studies as they either contained eukaryotic samples 
or consisted of amplicon sequences.

To broaden the set of biomes under study, cat gut and soil metage-
nomes were manually added. These samples fulfil the quality criteria 
above (over 1 million reads, >75 bp per read, on average), but are con-
tained in projects with fewer than 100 samples.

This selection and data download is implemented by the Python 
scripts in the fetch-data/ directory of the supplementary software pack-
age, which rely on the requests package. The resulting set of samples is 
listed in Supplementary Table 1. Based on further analyses, 369 samples 
were found to be misannotated and to consist of amplicon data. Thus, 
while they were used in the construction of the catalogue, they were 
not used in the rest of the analyses in this work.

Genomes were selected as in the proGenomes2 database9, by collect-
ing an updated set of high quality genomes from the NCBI database.

The map in Fig. 1a shows the geographical distribution of samples. It 
was created using R60 and the package maptools (version 1.1.0).

Contig assembly and ORF prediction
The reads were processed using NGLess61, discarding short reads (less 
than 60 bp), after trimming positions with quality <25. Filtered reads 
were assembled into contigs with Megahit62 (using default parameters 
for metagenomics) and open read frames (ORFs) were predicted with 
MetaGeneMark63. These steps were performed using the NGLess61 script 
assemble/assemble.ngl in the supplementary software package.

Non-redundant gene catalogue construction
A non-redundant unigene catalogue was built in a four-step process.

Step 1: using rolling hashes, exact matches are found and genes which 
are perfectly contained in another gene are removed. This step is per-
formed by the Jugfile64 and the other scripts in the directory redun-
dant100/ of the supplementary software package.

Step 2: using DIAMOND65, all genes are compared against each other.
Step 3: the matches resulting from the previous step are filtered (in 

nucleotide space) so that only ‘representable’ relationships are kept. 
Namely, A is considered representable by B if there is a sequence A′ 
such that A′ is a substring of B and the edit distance from A to A′ is 
≤5% of the length of A. When the lengths are identical (or similar), this 
definition corresponds to the species-level 95% nucleotide identity 
criterion (Extended Data Fig. 2a). When A is a fragment of B (even with 
minor changes), however, then only B is kept. The result of this step is a 
graph where each vertex is an input gene sequence and directed edges 
correspond to representable relationships.

Step 4: select a dominant vertex set. A dominant vertex set, D, is a set 
of vertices such that all vertices in the original graph are either (1) con-
tained in D, (2) represented by a gene that is contained in D. This step is 
solved using a greedy approach: starting with the empty set, iteratively 
add vertices to the output choosing, at each step, the vertex whose 
addition would most increase the number of represented sequences. 
Ties are broken in an arbitrary, but reproducible manner, by using the 
order of the sequences in the input file as the fallback criterion.

Steps 2–4 are performed by the code in the cluster-genes directory 
in the supplementary software package.

Quality control of the GMGCv1
Although a large number of unigenes (189,105,503) could only be 
assembled in a single sample, 74.9% of these assembly singletons 
were subsequently detected in multiple samples by read mapping 
(see ‘Metagenomic annotation and profiling’ for details on detection). 
Similarly, despite the fact that a large fraction of unigenes are incom-
plete ORFs, at least 91.7% of them are merged into protein families. This 
includes 83.2%, which cluster into a protein family that includes at least 
one complete unigene (that is, they are homologous to a complete ORF 
sequence, so are as real as those) and 8.5% which form small protein 
families of their own (which also considerably increases the likelihood 
that they represent real genes).

The unigene resulting catalogue was screened for potential chimeras 
by aligning it to Uniprot using DIAMOND (parameters: blastp -c 1 -b 
4.0). Genes which had (at least) two alignments with >70% amino acid 
identity with an overlap of fewer than 10 amino acids were considered 
potential chimeras. Only 920,579 unigenes met this criterion.

To further check the effect of including incomplete ORFs in the cata-
logue, we checked whether there was extensive overlap of fragments at 
gene ends, as would be expected if multiple incomplete ORFs originate 
from a single real sequence that we failed to assemble completely. 
However, we reasoned that if the problem was extensive, we would 
frequently observe overlaps at the edges of fragments. To directly test 
this hypothesis, we aligned a randomly selected set of unigenes back 
to the full catalogue (using a combination of DIAMOND65 in amino acid 
space to pre-filter and full Smith–Waterman nucleotide alignments to 
obtain the final result). We counted how often we could find another 
gene that overlapped (at ≥95% nucleotide identity) with the query at 
one of its edges. Eight per cent of unigenes had such an edge overlap. 
The presence of overlaps is not, by itself, sufficient to conclude that we 
have extraneous unigenes. It is not uncommon that pairs of unigenes 
have internal regions of high identity even though the sequences as 
a whole are still above the threshold. Although this analysis does not 
completely exclude the possibility that genes generate non-overlapping 
fragments (particularly, if they start at opposite ends), we could not 
find evidence of widespread fragmentation.

We also checked whether incomplete ORFs show different behaviour 
in prevalence. For this, we compared the prevelance of ORFs that are 
adjacent in a metagenomic contig. Incomplete ORFs are, in general, less 
prevalent (which is natural, as the more often a sequence is observed, 
the more likely it is that it will be assembled into the complete gene). 
However, the overall correlation (Spearman r) in prevalence between 
adjacent ORFs on a contig (technically, between the unigenes that are 
representing them) is very similar: complete/complete: 0.46; complete/
fragment: 0.48; fragment/fragment: 0.49.

To assess possible human contamination, the catalogue was split into 
files containing 50,000 sequences and aligned with blastn (nucleotide–
nucleotide BLAST+ 2.7.1) against a human genome reference (GRCh38.
p10) containing genomic, cdna and 45S rRNA regions. An e-value of 
0.00001 was used. Results were then processed and alignments with 
spans of <100 nucleotides were discarded if this corresponded to less 
than 2/3 of the length of the query sequence. Finally, we considered the 
highest identity across all alignments of every unigene and removed 
unigenes with ≥97% identity from the catalogue.

AntiFAM66 was used to detect spurious ORFs and reported only 37,428 
unigenes (0.012%) as matching its database of known false positives.

Metagenome-assembled genomes construction
MAGs were built using Metabat267 using default parameters, by binning 
on the contigs described above from per sample mappings obtained 
with BWA68. This resulted in a total of 278,629 bins. Genome statistics 
were estimated using the lineage workflow of checkM69 and they are 
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provided for all bins in Supplementary Table 5. Genomes are classified 
into high, medium, or low quality following MIMAG cut-offs70.

Metagenomic species construction
MGSs were identified for each biome using co-abundance clustering15. 
Only complete unigenes that were observed in at least 3 samples 
were clustered. A Pearson correlation coefficient above 0.9 was used 
as cut-off and the canopy profiles were calculated sample-wise as 
the 75th percentile abundance across all genes. Co-abundant gene 
clusters were filtered based on their size, inter-quartile GC range, 
presence of marker genes, and taxonomy. The resulting 7,443 clus-
ters contained more than 500 genes and were called MGSs. MGSs 
where at least 80% of the genes could be annotated to a single spe-
cies with 95% sequence identify were said to be of that species. MGSs 
with inconsistent taxonomy (>10% ambiguity at any given taxonomic 
level) were discarded. MGSs with an inter-quartile GC above 10% were 
also discarded. MGSs that were annotated to Bacteria and Archaea 
at kingdom level, and which contained fewer than 6 marker genes, 
were also removed.

Estimation of mapping rates to GMGCv1 and reference genomes
To estimate the quantity of ‘microbial dark matter’ for each habitat, 
we built a non-redundant catalogue based exclusively on the sub-
set of ORFs from the sequenced genomes used in the global cata-
logue, resulting in 44,098,640 non-redundant unigenes. Aligning 
the metagenomic reads to this collection revealed that, for certain 
habitats, sequenced genomes already capture most of the biodiver-
sity, for example, for human gut samples, on average 80.3% of the 
short reads in the samples can be aligned to sequenced genomes 
(Extended Data Fig. 3a), a result that is consistent with previous 
work71. However, even for the human gut, there are samples that 
are not well represented by sequenced genomes only, particularly 
samples from less well-studied, lower-income countries (Extended 
Data Fig. 3b, c).

Protein family cluster calculation
For computing protein family clusters we used standard MMseqs213 
(version fd3db05699decf550f428782e1b382a9b7f490e1) settings 
with an additionally required amino acids identity threshold of 50%, 
30% or 20% and a minimum sequence coverage of 50% (keeping the 
default minimum e-value threshold of 10−3). The parameters used were 
--min-seq-id 0.2 -c 0.5 -cov-mode 2 -cluster-mode 0 (where 0.2 was 
replaced by 0.3 and 0.5, for 30% and 50% identity, respectively). Sup-
plementary Table 4 provides summary statistics on the results of this 
clustering process.

Protein clusters were done similarly, with a minimum identity thresh-
old of 90% and a minimum sequence coverage of 90%. The parameters 
used were -min-seq-id 0.9 -c 0.9 -cov-mode 1 -cluster-mode 2.

Taxonomic predictions
Taxonomic predictions were obtained by a combination of three 
approaches: (1) unigenes that cluster at <95% (nucleotide identity) 
with sequences from a single species were assigned to that species. For 
the remaining unigenes, (2) the best hit (as determined by DIAMOND) 
to the full Uniprot database predicted the superkingdom (Bacteria/
Archaea/Eukarya/Viruses). (3) For unigenes predicted as bacterial 
or archaebacterial in the previous step, the dual-BLAST least com-
mon ancestor approach72 (using the amino acid representation and 
DIAMOND as an alternative to BLAST) was used to determine the final 
prediction. Species-level assignments from this method were converted 
to genus level.

This method assigned a prediction to 78.4% of GMGCv1 unigenes at 
levels ranging from species to domain of life (Extended Data Fig. 2). Of 
these unigenes, 94.6% were classified as bacterial genes, while 2.7% were 
archaeal, 1.7% were eukaryotic and 0.9% were viral genes.

Estimation of within-species and within-genus nucleotide 
identity thresholds
Genes were annotated in Prokka73. Blastn (nucleotide–nucleotide 
BLAST 2.2.29+) searches were performed on 107 species (specI clusters) 
which belong to 32 genera. Each specI cluster had at least 10 genomes. 
SpecI clusters that contained more than 20 genomes were randomly 
down-sampled to 20 genomes). We used all genes in each genome for 
blastn searches against other genomes in a specI cluster or between 
specI clusters from the same Genus. Nucleotide identity in Extended 
Data Fig. 2a is the average of all identities of gene matches in the pair of 
genomes. In total we performed 14,686 pairwise genome-comparisons 
within specI clusters and 51,368 comparisons between specI clusters 
within genera.

Estimation of amino acid identity within orthologues
Average amino acid identity was computed for the clusters in eggNOG 
574 corresponding to previously characterized 40 universal marker 
genes that span bacteria and archea13, namely: COG0098, COG0091, 
COG0186, COG0088, COG0200, COG0202, COG0184, COG0100, 
COG0049, COG0256, COG0097, COG0522, COG0090, COG0048, 
COG0495, COG0185, COG0102, COG0541, COG0096, COG0215, 
COG0081, COG0087, COG0201, COG0080, COG0086, COG0018, 
COG0016, COG0533, COG0052, COG0093, COG0094, COG0092, 
COG0099, COG0012, COG0197, COG0103, COG0525, COG0552, 
COG0172 and COG0124. The precomputed alignments within eggnog 
5 were used for identity computation, which was performed with the 
AliStat tool in the HMMER3 package75.

Annotation of mobile genetic elements
We annotated mobile genetic elements within the dataset using hidden 
Markov models for DDE recombinase (PF01609, PF02914, PF01359, 
PF09299, PF00872, PF01526, PF01548, PF02371, PF03400, PF04986, 
PF12017, PF01385, PF01610, PF03004, PF03050, PF03108, PF04693, 
PF04754, PF04827, PF05598, PF07592, PF08721, PF08722, PF10551, 
PF12596, PF12762, PF13006, PF13007, PF13340, PF13359, PF13586, 
PF13610, PF13612, PF13701, PF13737, PF13751, PF02992, PF03184, 
PF12784, PF13358, PF13546, PF13843, PF10536, PF03017, PF04195 and 
PF04236, retrieved from Pfam-A (ftp://ftp.ebi.ac.uk/pub/databases/
Pfam/current_release/) in November 2017), tyrosine recombinase76 and 
HUH recombinase (PF01797) using HMMER 3.1b2 and the respective 
family-specific gathering threshold. Multiple hits were resolved by 
retaining the hit with highest bit score and e-value less than 0.00001.

Antibiotic-resistance gene annotation
Genes were assigned ARG status based on the Comprehensive Antibi-
otic Resistance Database (CARD)77 and the ResFams database78 as fol-
lows. Catalogue unigenes were assigned to a CARD model by applying 
the CARD RGI software, requiring a hit scoring above the family-specific 
threshold, with the top hit taken if several are achieved. Similarly, Res-
Fams hits were assigned to unigenes if (1) no CARD hit was assigned and 
(2) the score to a ResFams hidden Markov model exceeded the gathering 
threshold for that model. Of the three ARG models in CARD version 1.1.5, 
we excluded target loss models (where loss of a gene confers resist-
ance) and protein variant models (for example, where known single 
nucleotide variations affect antibiotic susceptibility) as ARGs under 
these models cannot be reliably identified using our analysis pipe-
line. Instead, we used only the CARD homologue models, where under 
assumptions of curation of the database, the presence of a member of 
an ARG family is considered a reliable indicator for likely ARG potential.

k-mer based homology search
Genes were indexed by 7-mers in a reduced 16 amino acid space79. By 
encoding each of the 16 possible amino acids using 4 bits, each 7-mer 
is converted to an integer in the range 0 to 228 − 1. Each sequence is 

ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/)%20in%20November%202017
ftp://ftp.ebi.ac.uk/pub/databases/Pfam/current_release/)%20in%20November%202017
Insuk Lee
강조

Insuk Lee
강조

Insuk Lee
강조



Article
then indexed by all k-mers that it contains. For all 7-mers, member 
sequences are stored as a list of increasing integers. At search time, the 
sequence indices for all the 7-mers in a query sequence are retrieved 
and combined together to retrieve the 100 sequences in the database 
that share the highest number of 7-mers with the query. This set of 100 
candidate hits is then re-ranked by re-aligning the query sequence with 
a fast implementation of Smith–Waterman80. This indexing and query-
ing method is implemented by the code in the k-mer-find subdirectory 
of the supplementary software.

Metagenomic annotation and abundance profiling
The catalogue was functionally annotated using eggnog-mapper2 
(version 2.0.1), which assigned 222,320,961 species-level unigenes 
(73.4%) to an eggNOG orthologous group17. We validated this approach 
by annotating a randomly selected set of ORFs in the redundant set 
that had not been selected as unigenes. When they were assigned to 
an orthologous group (OG), 95.4% of these were annotated to the same 
OG as the unigene that represents them. To measure the performance 
of eggnog-mapper on partial ORFs, we considered only the cases where 
the unigene is a complete ORF and the redundant ORF is a fragment. In 
class of cases, 93.7% of the annotations are to the same OG.

The metagenomes were mapped to the catalogue using minimap281, 
after read trimming and filtering as described in ‘Contig assembly and 
ORF prediction’. A unigene was considered as detected in a sample if 
it had reads mapping to it unambiguously. Gene and functional abun-
dance profiles were then computed with NGLess61 as well as Jug64 scripts 
provided in the profiles-all directory of the supplementary software. In 
brief, abundance was estimated as the number of short reads mapping to 
a given sequence, with multiple mappers (short reads mapping to more 
than one sequence) being distributed by unique mapper abundance. For 
cross-sample comparisons, these results were normalized by library size.

Additionally, taxonomic profiles were obtained using mOTUs282 
through a NGLess wrapper, using default parameters. As contami-
nants can be detected in low-biomass samples83, we used a set of nega-
tive controls (sample accessions: SAMN03792193, SAMN03792201, 
SAMN03792209, SAMN03792217, SAMN03792225, SAMN03792233, 
SAMN03792241, SAMN03792249, SAMN03792257, SAMN03792265, 
SAMN03792273, SAMN03792282 and SAMN03792290) to obtain a list 
of suspicious mOTU clusters. The resulting set (Enterobacteriaceae sp.  
[ref_mOTU_v2_0036], Burkholderia sp. [ref_mOTU_v2_0098], Aci-
netobacter sp. [ref_mOTU_v2_0197], Sphingobium yanoikuyae 
[ref_mOTU_v2_0291], Stenotrophomonas maltophilia [ref_mOTU_
v2_0363], Methylophilus sp. [ref_mOTU_v2_0404], Cupriavidus metal-
lidurans [ref_mOTU_v2_0743], Pseudomonas sp. [ref_mOTU_v2_0932],  
Afipia broomeae [ref_mOTU_v2_1051], Methylobacterium oryzae [ref_
mOTU_v2_1197], Methylobacterium extorquens [ref_mOTU_v2_1319], 
Bradyrhizobium sp. [ref_mOTU_v2_2670], Ralstonia sp. [ref_mOTU_
v2_2701] and Bradyrhizobium sp. [ref_mOTU_v2_3893]) was excluded 
from consideration as possibly cross-habitat species. After these exclu-
sions, Janthinobacterium lividum [ref_mOTU_v2_1333] was found to be 
present in multiple habitats, which is consistent with previous reports 
of detecting this extremophile across a broad range of soil and aquatic 
habitats84,85.

Statistical analyses
Statistical analysis was carried out in Python, using NumPy86, SciPy87 
and Pandas.

For testing the significance of the number of multi-habitat genes, 
the habitat of each sample was shuffled 32 times and the number 
of multi-habitat genes in that shuffled condition was counted. The 
Wilks–Shapiro test confirmed that this was well-modelled by a normal 
distribution (P = 0.98) as was expected from theoretical considera-
tions (the total number of multi-habitat genes is a sum of a very large 
number of indicator variables, one for each unigene, each coding 
whether its respective unigene is a multi-habitat gene). This resulted 

in 89,481,710 ± 996,121 (mean ± s.d.) multi-habitat unigenes. Thus, 
the observed value (18,145,135) is 71.6 s.d. below the value expected 
by chance (P < 10−300).

Where shown, box plots show quartiles with the box (with a line drawn 
at the median), while the whiskers show the range of the data, exclud-
ing outliers. Outliers are defined by Tukey’s rule, namely as datapoints 
below Q1 − 1.5 × (Q3 − Q1), where Q1 is the first quartile and Q3 is the 
third; or above Q3 + 1.5 × (Q3 − Q1).

Single-copy marker gene methods
For extracting single-copy marker genes, we used the fetchMG tool16. 
The number of different single-copy operational taxonomic units pre-
sent in each sample was then estimated by (1) counting, for each of the 
40 COGs that are identified by fetchMG, the number of gene variants 
to which at least one paired-end read was unambiguously assigned 
to obtain the COG-specific species estimates, and (2) averaging the 
COG-specific estimates to obtain the final estimate of single-copy OTUs.

COG 525 (valyl-tRNA synthetase) was used to estimate taxonomic rich-
ness. Previous work had identified the COG-specific species-identity 
threshold16 for this gene to be very close to 95% (which was used to build 
the catalogue). This was chosen over COG 12 (a GTP-binding protein), 
which also has a COG-specific threshold similarly close to 95%, as it is 
much longer on average (2,007 versus 366 residues for COG 525 and 
COG 12, respectively).

For validation, we used the mOTUs2 profiles described above. In the 
habitats for which the use of mOTUs2 is appropriate for estimating 
diversity, richness estimates from the two methods correlated well 
(human gut: r = 0.71, P < 10−300; human vagina: r = 0.78, P = 1.1 × 10−10; 
human skin: r = 0.86, P = 9.2 × 10−140; human oral: r = 0.75, P = 3.3 × 10−210; 
marine: r = 0.63, P = 8.3 × 10−16; Spearman r, for samples with ≥1 million 
reads after quality control). For samples in other habitats, the cor-
relations were not always high (for example, in the pig gut, r = −0.08, 
P > 0.05), as this is not an appropriate use of the mOTUs2 tool. Thus, 
taxonomic richness was estimated for all samples based on the COG 
525 estimator.

Diversity analyses
Gene count tables were rarefied to 1 million reads by random sampling. 
If fewer than 1 million reads were available, then this sample was not 
considered further in this group of analyses—even though all metage-
nomes contained ≥1 million reads at the input, after quality-based fil-
tering, some contained fewer than 1 million reads. This operation was 
performed by the script diversity.py provided in the profiles-all/gene.
profiles directory of the supplementary software.

Protein family richness was used as a proxy for functional richness. 
Results using only orthologous groups inferred using eggnog-mapper17 
were similar (Spearman R = 0.83, comparing protein family and ortholo-
gous group richness across samples; R = 0.87 if only samples from the 
well-studied human gut habitat are used), ensuring that this can be a valid 
proxy for functional diversity even if some individual protein families 
may contain non-orthologous members whose function has diverged.

For classification, a random forest classifier, as implemented in 
scikit-learn88 with 100 trees (using default parameters). Tenfold, strati-
fied cross-validation was used to evaluate the classification accuracy. To 
control for the class-size imbalance, the larger habitats were randomly 
downsampled to a maximum of 200 samples (so the largest habitats 
represent at most 11.8% of the dataset). This was performed with the 
script classify-biome-from-divs.py in the gmgc.analysis/profiles direc-
tory of the supplementary software.

Fitting the gene frequency spectrum to the neutral infinite gene 
model
We defined the gene frequency ck as the number of genes that is 
detected k times (for example, c2 is the number of genes detected in 
exactly two metagenomes). The ‘infinite gene model’, in which new 
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genes are generated at random and existing ones are lost at random 
(without any effect on fitness), predicts an almost linear relationship20 
between ck and 1/k.

We obtained estimates of ck by first rarefying the unigene count 
matrices to 1 million (see ‘Diversity analyses’; these data are plotted in 
Fig. 2). We excluded from this analysis habitats where after filtering out 
samples with fewer than 1 million reads after quality control, there were 
fewer than 100 samples remaining. For human-associated habitats, 
when multiple samples from the same individual were present, only 
one was used (as samples from the same individual, even if collected 
at different times, are not independent samples).

To quantify the goodness of fit, we computed the Pearson correla-
tion between 1/k and the estimated ck values for k = 1,...,100. Overall, 
the correlation was 0.989806 (P = 9.1 × 10−85) and very high across all 
the habitats (Supplementary Table 6).

The very high correlations we obtained lead us to conclude that 
the neutral ‘infinite gene model’ is a good fit for the gene frequency 
spectrum of metagenomes and that the majority of genes cannot be 
under strong selection. The fit is particularly high at the lower end 
(k = 1,...,10), the genes that we call rare (see Supplementary Table 6).

This result is consistent with assertions that the infinite gene model 
is not a good model for prokaryotic genomes25,89. As noted in the main 
text, rare genes represent a small fraction of sequenced genomes.

Selection tests for GMGC unigenes and pan-genome clusters
Multiple sequence alignments were generated, for a representative 
set comprising 198,208 GMGC unigenes, using ClustalOmega (ver-
sion 1.2.4)90, for the translated version of all ORFs grouped under each 
unigene. Amino acid alignments were back-translated into codon align-
ments, and used to reconstruct phylogenetic trees using FastTree2 (ver-
sion 2.1)91 with default parameters. The whole workflow was executed 
using ETE3 (version 3.1.1)92 with options ete3 build -w standard_fast-
tree -nt-switch-threshold 0.0 -t 0.5 -launch-time 0.5 -noimg -clearall 
-nochecks.

We also analysed 127,618 unigenes in the pangenome of E. coli (specI 
cluster 95). Escherichia coli protein sequences within each unigene 
were aligned using Muscle v3.8.393 and transformed into nucleotide 
alignment using pal2nal94.

For both GMGCv1 unigenes and E. coli gene clusters, selection tests 
were run using HyPhy version 2.5.1 (www.hyphy.org). Per-site selection 
tests were computed with the FUBAR model (analysis version 2.2)95, 
which computes the dN/dS ratio per site as well as the posterior prob-
ability of positive and negative selection at each codon. Sites under 
positive and negative selection with posterior probability ≥ 0.95 were 
selected. A ratio of sites under selection per gene was calculated by 
dividing the number of sites under selection by the total length of 
the alignment used. Per branch selection tests were computed on 
the protein family clusters with the aBS-REL method96, which runs 
an adaptive branch-site model that permits selective pressures on 
sequences, quantified by the ω ratio (dN/dS), to vary among both codon 
sites and individual branches in the phylogeny. For testing unigenes 
within GMGC families, an exploratory analysis of all branches was per-
formed, retrieving Holm–Bonferroni multiple-test corrected P-values 
at 0.05. For this test, we limited our analysis to 5,912 protein family 
clusters (175,395 unigenes) with at least one complete gene model in 
the alignment and that have been predicted (with P ≤ 0.05) to represent 
an alignment of expressed genes by the software RNACode (version 
0.3)97. The fraction of unigenes showing evidence of positive selec-
tion is computed only within unigenes represented by complete ORFs 
to avoid any confounding effects related to incomplete sequences. 
The same criteria were used for E. coli clusters, except that only E. coli 
branches within each GMGC protein family were tested and all clusters 
were assumed to represent expressed genes. Given that per-site selec-
tion tests might be heavily confounded by sequence sampling (that 
is, the cluster size) as well as the length of the alignments, we limited 

those tests to alignments of size between 109 and 361 (as these limits 
represent the mean ± 1 × s.d.) and rebalanced the random dataset so 
that each rareness category contains exactly the same distribution 
of cluster sizes. Within the broader catalogue, there is a strong link 
between the number of detections of a unigene and the number of 
sequences available for it, as is expected. This link is weaker in genes 
from isolates as the number of sequences reflects both its prevalence 
in metagenomes as well as within the population of isolates, which is 
not an accurate reflection of its prevalence in the broader environment. 
Here, we took advantage of this bias and performed this conservation 
analysis on pangenomes.

Operon functional conservation
KEGG pathway prevalence in the genomic context of unigenes was 
used as a proxy for operon-like functional conservation. For each 
unigene, genomic context was extracted for all clustered ORFs (that 
is, ORFs clustered at 95% nucleotide identity) in the contig neighbour-
hood. KEGG pathways diversity per unigene was then computed as 
the ratio of unique KEGG pathways to total KEGG pathways observed 
in a window of four neighbouring genes (two genes upstream and two 
downstream): (unique KEGGs /total KEGGs). Then, KEGG conservation 
per unigene was calculated as 1 − KEGG pathway diversity. KEGG con-
servation score was evaluated for 10 random sets of GMGC unigenes 
with 10 rareness categories, each category including 10,000 uni-
genes with at least 3 and a maximum of 1,000 ORFs. To avoid potential  
biases created by fragmented sequences, we excluded incomplete 
genes from the test.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
All data analysed during the current study are publicly available. Sup-
plementary Table 1 contains the accession numbers for all the metagen-
omes used. GMGCv1 is available for download at https://gmgc.embl.de.  
The full catalogue is available for download as are sub-catalogues 
specialized to individual habitats and the subset derived only from 
sequenced genomes (which can be further subset to obtain the pange-
nome of a species of interest). Both the full catalogue and a version 
containing only complete ORFs are available as they represent different 
tradeoffs: the complete catalogue achieves higher coverage, while the 
version with only complete ORFs may be more appropriate for analyses 
that require the whole gene. Similarly, protein families are available at 
different amino acid identity thresholds (see ‘Protein family cluster 
calculation’). In addition to being available for download, the catalogue 
can be queried with an amino acid sequence. We developed and use a 
novel k-mer based algorithm (see ‘k-mer based homology search’) to 
enable fast queries over the complete 303 million protein database 
and allow interactive use.

Code availability
The source code implementing the analyses in this manuscript is avail-
able on Github (https://github.com/luispedro/Coelho2021_GMGCv1) 
and is archived at Zenodo (https://doi.org/10.5281/zenodo.4769556).
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Extended Data Fig. 1 | Gene accumulation curves. Legend. (a) For most (but 
not all) habitats, unigenes with high prevalence (≥ 5%) have been well-captured, 
while rare unigenes continue to be found in each new sample. (b-d) New 
unigenes continue to be found in each sample. Each grey line represents a 
random permutation of the samples, while the solid black line shows the mean 
over these random permutations. The dotted red line is least-squares fit of 

Heap’s Law (N = k · sample^alpha). In all cases, the parameter fit indicates that 
the number of has not reached saturation. (e) The number of assembled/
detected genes per sample grows with sequencing depth without a plateau 
being reached. (f) Similarly, the number of detected ORFs per insert grows with 
sequencing depth.



Extended Data Fig. 2 | Identity thresholds and their relationship to 
taxonomy and function in the GMGCv1. Legend: (a) A 95% nucleotide identity 
threshold is a proxy for species. Shown is nucleotide identity of closest gene 
homolog within the same species or within the same genus (excluding 
within-species comparisons). The threshold used in this work (95%) is marked 
with a dashed red line. (b) Within well-conserved, universal, 40 single-copy 

orthologues (see Methods), the average pairwise amino acid identity is 49%, 
albeit with a wide range (27-75%) when considering within-orthologue 
averages. In dashed red, the thresholds used for building protein families are 
highlighted. Boxplots display quartiles and ranges (see Methods).  
(c) Proportion of genes annotated at each taxonomic level.
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Extended Data Fig. 3 | Short reads map to the GMGCv1 at higher rates 
(compared to a reference database of reference genomes). Legend:  
(a) Mapping rates for short reads from metagenomes mapped against the 
GMGCv1 or the reference genomes in proGenomes2. (b) Fraction of short reads 
from human gut metagenomes mapping to a collection of sequenced genomes 

and the GMGCv1, per country, (c) Same data as (b), aggregated by the World 
Bank’s classification of countries into income groups. In all panels, boxplots 
show quartiles (including median) and range (except for outliers, see Methods). 
Blue boxes show mapping rates to proGenomes2, while orange boxes show 
mapping rates to GMGCv1.



Extended Data Fig. 4 | MAGs only capture a small fraction of all genes in a sample. Legend: Fraction of undetected genes when mapping to only the genes 
captured by metagenome-assembled genomes (MAGs) across the habitats compared to mapping to the full GMGCv1.
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Extended Data Fig. 5 | Species and protein cluster sharing between habitats 
is similar to unigene sharing, but sharing of protein families is more 
extensive. Legend: (a) The sharing of metagenomic species between habitats 
mimics unigene sharing. Width of each ribbons represents the number of MGSs 
shared between the habitats (the largest number shared is between the human 
and the pig gut, which share 166 MGSs out of 1,908 MGSs in the human gut and 
898 in pig gut, respectively). (b) Species-level unigene sharing between 
habitats by fraction of the number of unigenes from each habitat (cf. Fig. 1b, 

which uses abundance weighting). (c) Sharing of protein clusters (90% amino 
acid identity clusters) between habitats, abundance-weighted. (d) Sharing of 
protein families between habitats, abundance-weighted. When considering 
coarser clusterings of sequences, gene sharing between habitats increases, yet 
we still observed higher rates of sharing between similar habitats and 
significant fractions of habitat-specific families (e.g., in the marine 
environment, 31.3% of the genes, by abundance, are in marine-specific protein 
families).



Extended Data Fig. 6 | Antibiotic resistance and mobile genes are more likely 
to be multi-habitat genes, while most species are found in a single habitat. 
Legend: (a) Fraction of unigenes within each habitat which are multi-habitat 
genes (for all unigenes, or when considering only mobile elements or antibiotic 
resistance genes). (b) A total of 7,443 MGSs were built, across all the habitats 

as species proxies to reliably assess their habitats. Each circle shows the 
number of metagenomic species for each habitat, x-axis represents the number 
of genes in the catalogue specific to each habitat, the y-axis represents the 
number of samples. Note that differing sampling depth and habitat-specific 
biodiversity impact those numbers.
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Extended Data Fig. 7 | Determinants of functional community structure. 
Legend: (a) principal coordinate analysis of all samples by protein family 
profile and the correlations with taxonomic and protein family richness (after 

rarefying to 1 million inserts to remove effects of sample depth).  
(b) Hierarchical clustering of the habitats using high-level functional  
profiles based.



Extended Data Fig. 8 | Marine and soil richness patterns are a mixture of 
subpatterns. Legend: Conspecific genes per species in marine (a) and (b) soil 
sub-habitats. The differences in the marine environment are particularly large 
when comparing the samples in the photic zones (the shallower, 
light-accessible, surface and deep-chlorophyll maximum samples) to the 

non-photic mesopelagic samples (deeper, beyond the reach of sunlight). The 
differences in the soil environment follow differences in acidity (with Podzol, 
Dystric Brunisol and Ultic soils being acidic, while Luvisols are usually neutral 
or alkaline) and differences in moisture (with Xeralfs being dry in the summer, 
while Glossudalfs are moist year round).
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Extended Data Fig. 9 | Most genes are detected only infrequently and rare 
genes are (on average) present at a lower abundance in metagenomes. 
Legend: (a) Shown are the percentage of genes detected in at most 1,...,50 
metagenomes (out of a total of 13,174). (b, c) Histograms of gene prevalence are 
roughly linear on a log-log scale, as predicted from neutral or nearly-neutral 
evolution models. Shown are histograms for 90% amino acid identity protein 
clusters (b) and 20% amino acid identity protein families (c), which behave 

similar to species-level unigenes (see Fig. 3). (d) Shown is the percentage of 
genes in each sample that is composed of rare genes (Count) and the total 
abundance represented by these (Abundance). Except for wastewater (likely 
due to under-sampling), rare genes represent a lower fraction of the abundance 
than of detection. Boxplots show quartiles (including median drawn as a line) 
and whiskers show the range of the data excluding outliers, which are shown as 
extra elements (see Methods).



Extended Data Fig. 10 | More abundant and larger protein families are under 
more intense selection. Legend: (a) dN/dS within each protein family, with 
protein families split into 5 abundance quintiles, showing a downward trend 
with abundance (higher negative selection). (b) dN/dS within each gene size 

category, similarly showing a downward trend with size. Categories are defined 
by increasing size, with each bin representing the same number of unigenes. 
Boxplots show quartiles and ranges (see Methods).
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in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Only open source software was used to retrieve the data sets. Custom scripts were provided as Supplemental Material. These are written in 
Python (3.6.4) using Jug (1.6.6), pandas (0.22.0), and requests (2.14.2).

Data analysis Only open source software was used for data analysis. Custom algorithms and scripts were provided as Supplemental Material. These are 
written in Python (3.6.4) using Jug (1.6.6), NumPy (1.12.1), SciPy (0.19.1), and scikit-learn (0.19.0), as well as Haskell (Stackage LTS 10.2). 
Additional command line tools used were NGLess (0.9.1), eggnog-mapper (2.0.0), and diamond (0.8.36),  MetaGeneMark (2.8), RNACode 
(0.3), mmseqs2 (fd3db05699decf550f428782e1b382a9b7f490e1), ETE3 (3.1.1), FastTree (2.1), ClustalOmega (1.2.4).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

All data is publicly available. Suppl. Table 1 lists the accession numbers of all the samples.
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We analysed the distribution of genes and functions by building a global gene catalog, including genes defined at different clustering 
levels (from species to broad gene families). The presence and abundance of the genes in each metagenomes was quantified by 
mapping the short reads to the catalog and subsequently, the observed patterns were analysed in the context of existing literature 
and ecological theory.

Research sample This study re-analyses publicly available data. In particular, it includes all studies available on the European Nucleotide Archive (ENA) 
in early 2017 which (1) contained shotgun metagenomic data, (2) with at least 1 million Illumina reads per sample, (3) an average of 
at least 75bp per read, and (4) at least 100 samples. The initial list of samples was automatically generated by querying ENA and later 
manually curated to remove mislabeled samples. Additionally, the dataset was manually enriched by including dog gut and soil 
microbiomes which the authors had access to (even though they were not all publicly available at the time). Metadata was retrieved 
from ENA or the original publication by manual curation. Genomes were obtained from the ProGenomes database.

Sampling strategy The sample size was not pre-defined. Rather, all samples which fulfilled the quality criteria listed above were included. 

Data collection The data was retrieved from the European Nucleotide Archive (ENA) using scripts which automatically identified samples which 
fulfilled the criteria listed above.

Timing and spatial scale Data was collected without timing or spatial limitations.

Data exclusions Some datasets are mis-labeled on ENA, thus leading the automated scripts to erroneously include them even though they do not 
actually fulfill the pre-defined criteria. They were excluded by manual curation. 
 
For some analyses, only samples that retained at least 1 million reads after quality control (which may reduce the number of reads) 
were used as indicated in the methods section.

Reproducibility Not applicable: the study is a meta-analysis and includes all available data.

Randomization Not applicable: the study is a meta-analysis and there is no randomized component in the computational methods.

Blinding In this study, it was not possible to meaningfully blind the researchers during data collection. Note that the data was publicly 
available and only technical criteria were defined (described above).

Did the study involve field work? Yes No

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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