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Multiple genes and their interactions are involved in most human diseases. This pathway-centric view of human pathology is
beginning to guide our approaches to disease research. Analytical algorithms describing human gene networks have been
developed for three major tasks in disease research: (i) disease gene prioritization, (ii) disease module discovery, and (iii)
stratification of complex diseases. To understand the underlying biology of human diseases, identification of disease
genes and disease pathways is crucial. The functional interdependence between genes for disease progression has been
identified by their connections in gene networks, which enables prediction of novel disease genes based on their
connections to known disease genes. Disease modules can be identified by subnetworks that are enriched for patient-
specific activated or mutated genes. Network biology also facilitates the subtyping of complex diseases such as cancer,
which is a prerequisite for developing personalized medicinal therapies. In this review, we discuss network-assisted
approaches in human disease research, with particular focus on the three major tasks. Network biology will provide
powerful research platforms to dissect and interpret disease genomics data in the future.
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Introduction

Recent revolutions in high-throughput experimental tech-
nologies have changed paradigms in human disease
research. Historically, disease etiology focused on individ-
ual genes. However, recent progress in understanding the
complexity of disease genetics has shifted our attention
from genes to pathways. Genome-wide association study
(GWAS) suggested that numerous genes were associated
with complex diseases, and those disease-associated
genes were close to each other in functional gene networks
(Baranzini et al. 2009). Surveys of somatic mutations in
cancer patients revealed that most genes had somatic
mutations in only a few patients, but cancer signaling path-
ways were disrupted by mutations of some member genes
in most patients (Vogelstein et al. 2013). These obser-
vations support the need for pathway-centric views of
human pathology.

Network approaches to human disease enable in silico
investigations of novel disease genes and modules through
experimental analyses of the molecular networks. The prin-
ciple of guilt-by-association has been a popular strategy in
phenotype prediction and interpretation, which has been
proven as useful with the availability of highly accurate
and comprehensive molecular networks (Lee 2013).
Network-based methods recently began to tackle another
important issue in complex disease research, which is sub-
typing complex diseases such as cancer. We will discuss
network-assisted approaches for the three major tasks in
human disease research: (i) disease gene prioritization, (ii)
disease module identification, and (iii) stratification of
complex diseases (Figure 1).

Network-assisted disease gene prioritization

An overriding task for human disease research is to estab-
lish a complete catalog of disease-associated genes.
Unbiased forward and reverse genetic screens have
revealed many disease-associated genes. However, these
conventional genetics approaches cannot provide compre-
hensive catalogs because many disease-associated genes
have low genetic penetrance, which result in undetectable
phenotypic effects in large-scale genetic screens. By con-
trast, computational predictions based on genetic networks
enable highly sensitive detection of disease phenotypes by
critical examination of the prioritized candidate genes.
Network-assisted gene prioritization can be achieved
either by propagation of prior disease information through-
out networks or by integrating disease-specific data within
the networks.

Disease gene prioritization by network propagation

There are two conceptually distinct strategies for network
propagation (Wang & Marcotte 2010). In the direct neigh-
borhood strategy, prior disease information propagates
only to direct neighbors. Disease information transferred
from network neighbors to candidate genes is scored by
simple count of the neighbors or by sum of edge weights
to the neighbors, which is known as the naive Bayes
(NB) algorithm. Although the direct neighborhood strategy
is popular for network propagation, it has limited power if
the prior disease information is scarce. This is particularly
problematic for diseases with only a few known annotated
genes. In this case, only a few candidate genes can be
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prioritized by propagated disease information from direct
neighbors.

To overcome the direct neighborhood limitation, the
strategy of network diffusion was developed, which dif-
fuses prior disease information throughout the entire
network. Network diffusion allows all genes in the
network to receive propagated information and become
prioritized for the disease. Several algorithms have been
developed for network diffusion, including random walk
(RW), random walk with restart (RWR) (Woess 1994),
PageRank (PR) (Page et al. 1999), and Gaussian smooth-
ing (GS) (Zhou et al. 2003). Network diffusion algorithms
are affected by the ratio between disease information
retained in initial nodes and information transferred to
neighbors after diffusion. Most diffusion algorithms
utilize the following equation to determine the diffusion
coefficient:

f t+1 = a f t + (1− a) f 0.

Here, a user-defined parameter α determines the
amount of information to be propagated to the neighbors.
Although these diffusion algorithms are based on the
same propagation equation, the objective functions of

each algorithm are different; RW, RWR, and PR give
more weight to hub genes, whereas GS balances weights
among neighbors by using a smoothing technique. Concep-
tually, GS finds solutions where it achieves a minimal
difference between the initial and final scores of a
disease gene, and between the disease score of a gene
and each of its neighbors. Therefore, the GS algorithm is
more robust for the number of neighbors of each gene
than other network diffusion algorithms. GeneMANIA
(Mostafavi et al. 2008) is a popular application for gene
prioritization based on the GS algorithm.

Advanced network diffusion algorithms are not a gov-
erning factor for successful gene prioritization. Recently,
systematic benchmarking between direct neighborhood
and network diffusion has been performed (Shim et al.
2015). This study demonstrated that the effectiveness of
each network algorithm differed for early retrieval of can-
didates and for prioritization of disease genes throughout
the entire network. For example, in the majority of
human diseases, the simple NB algorithm outperforms
the advanced GS algorithm for the top 200 candidates,
whereas GS outperforms NB for all ranked candidates.
Considering that only a few hundred candidates generally
enter subsequent experimental tests, the optimal network

Figure 1. Network-assisted approaches for human disease research. Three major tasks are facilitated by network approaches to human
disease research: (a) disease gene prioritization, (b) disease module discovery, and (c) stratification of complex diseases. (a) Networks
facilitate gene prioritization by network propagation of disease information or by integrating disease-specific data with networks. DEG,
differentially expressed genes; GWAS, genome-wide association study. (b) Disease module discovery uses both patient-specific infor-
mation (gene expression or mutation profiles) and molecular networks, whereas conventional approaches for module identification use
only network topology. (c) Network-assisted disease subtyping utilizes patient-specific gene expression or mutation data.
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algorithm needs to be selected based on performance for
early retrieval. This study also demonstrated that network
algorithm effectiveness depends on the connectivity of
disease genes in the networks. The NB algorithm is more
effective for diseases whose member genes are well-con-
nected in the gene network, whereas the GS algorithm is
more effective for diseases whose member genes are dis-
connected in the network.

Disease gene prioritization by integrating disease-specific
data with networks

Network propagation approaches require prior knowledge
for the given disease. However, the amount of prior knowl-
edge is limited for most human diseases. This lack of prior
knowledge can be circumvented by using disease-specific
data from high-throughput experiments such as gene
expression profiling and GWAS. Differentially expressed
genes (DEGs) or single nucleotide polymorphism (SNP)
loci that are statistically associated with the patient popu-
lation of a given disease can be integrated with molecular
networks to identify novel disease genes that would not
be detectable by disease-specific data or molecular net-
works alone.

By assuming that disease genes tend to be surrounded
by network neighbors that are differentially expressed
under the relevant disease conditions, Nitsch et al. (2009)
identified disease-causing genes that belong to network
modules with significantly disrupted expression. To inte-
grate the identified DEGs with a network, they defined
the distance between two genes in a network using the
Laplacian exponential diffusion kernel, and then scored
candidates by aggregating the differential expression of
neighbors weighted as a function of distance. This
method prioritizes candidate genes by identifying their dif-
ferentially expressed neighborhoods.

Molecular network information can be integrated with
GWAS data by reweighting GWAS disease probability
using molecular networks. For example, protein interaction
network-based pathway analysis (PINBPA) (Wang et al.
2015) analyzes GWAS data in a network fashion.
PINBPA assigns GWAS probability scores to genes using
the popular tool VEGAS (Liu, Mcrae et al. 2010). Then,
it prioritizes genes using the RWR algorithm and identifies
subnetworks enriched for genes with high disease
probability scores. One limitation of this approach is the
reliance of GWAS data, in which only few SNPs pass strin-
gent statistical tests for low false-positive discovery rate. To
overcome the limited statistical power of GWAS, Lee et al.
(2011) proposed network-assisted boosting statistical
signals of GWAS, which employed a functional gene
network (HumanNet) constructed by integrating inferred
networks from available genomic and computational data.
The disease probability scores of GWAS that are reason-
ably high but could not pass stringent statistical tests

were rescored by using GWAS scores of network neigh-
bors. Thus, disease probability scores of genes connected
to the neighbors with high GWAS score are enhanced.
The effectiveness of this method was demonstrated by
boosting GWAS for Crohn’s disease and Type 2 diabetes.

Network-assisted disease module discovery

Many real-world networks have modular organization,
including molecular networks. The modules generally rep-
resent functional units that contain functionally coherent
components. For example, most cellular processes
operate via pathways in which functionally related genes
are interconnected to each other. A pathway-centric view
of human pathology supports modular approaches for
understanding disease mechanisms, and the identification
of novel disease modules is a crucial task in disease
research. Conventional approaches to discover modular
network structures are based on network topology, in
which highly interconnected subnetworks are implicated
as functional system modules. Disease modules are subnet-
works that are enriched for disease-specific genes or gene
candidates, and they can be discovered by combining
patient-specific data such as disease-specific gene
expression and gene mutation data with molecular net-
works. Thus, disease modules can be enriched for
disease-specific gene mutations or DGEs.

Cytoscape is a popular network biology software tool
that provides several plug-in applications for discovery of
disease modules. One of the applications [jActiveModule
(Ideker et al. 2002)] was developed to identify subnetworks
enriched for DEGs, which are defined as active modules.
This tool can be used to identify disease modules if
patient-specific gene expression data are available. The
algorithm applies a rigorous statistical measure for
scoring network modules by calibrating the z-score
against the background distribution. Other algorithms for
identifying active modules are Heinz (Dittrich et al.
2008), CEZANNE (Ulitsky & Shamir 2009), and
CASNet (Gaire et al. 2013). The algorithms HotNet
(Vandin et al. 2011; Leiserson et al. 2015) and Hyper-
Modules (Leung et al. 2014) identify statistically mutated
subnetworks among patients using local network search
heuristics to detect closely connected network regions. To
establish statistical significance for clinical correlations in
the identified modules, HyperModules applies standard
statistical tests such as log-rank test and Fisher’s exact
test, and corrects systematic biases across many shuffled
networks.

GWAS data can be analyzed in the context of disease
subnetworks. Dense module searching for GWAS
(dmGWAS) (Jia et al. 2011) provides a dense module
searching (DMS) algorithm to identify candidate subnet-
works or genes for complex diseases by integrating the
association signal from GWAS datasets into the human
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protein-protein interaction (PPI) network. The dmGWAS
algorithm considers gene-centric disease association prob-
ability as the node weight and prioritizes candidate genes
by DMS. Network Interface Miner for Multigenic Inter-
actions (NIMMI) (Akula et al. 2011) prioritizes disease
genes from GWAS using a page-rank algorithm. By com-
bining these weights with disease association probability
derived from GWAS, NIMMI produces trait-prioritized
subnetworks. An excellent review on network-assisted
analysis of GWAS data has been published recently (Jia
& Zhao 2014).

Network-assisted stratification of complex diseases

Disease subtype information is crucial for successful treat-
ment of complex diseases such as cancer. Conventionally,
cancer subtypes are identified by cluster analysis of
patient-specific gene expression profiles. Recent efforts
to improve cancer subtyping incorporate molecular
network information into analyses of gene expression or
gene mutation data. Here, we introduce two network-
assisted algorithms to discover cancer subtypes, which
are based on non-negative matrix factorization (NMF).
The advantages of NMF are superior data storage and inter-
pretability. Due to the non-negative constraints, NMF pro-
duces a so-called “additive parts-based” representation of
the data. NMF also excels in terms of factor interpretation,
which also is a consequence of the non-negative constraints
(Albright et al. 2006). The network-based stratification
(NBS) method (Hofree et al. 2013) integrates somatic
tumor mutations with a gene network. Somatic mutation
profiles are extremely sparse and heterogeneous; therefore,
NBS performs network smoothing and projects mutations
onto a network. Subsequently, NBS clusters the smoothed
profile using graph-regularized non-negative matrix factor-
ization (GNMF).

Generation of mutation data is becoming easier with
advanced high-throughput sequencing technologies,
although gene expression profiles are still the most abun-
dant data type. Network-assisted co-clustering for the
identification of cancer subtypes (NCIS) (Liu, Gu et al.
2014) provides an algorithm that incorporates gene
network information with gene expression profiles. NCIS
is distinct from NBS in that it uses semi-non-negative
matrix tri-factorization (SNMTF), which is a member of
the matrix factorization-based clustering family. SNMTF
clusters mixed-sign input data and can be used to partition
a given set of patients or genes into different clusters. Here,
the partition of patients into different clusters indicates
potential cancer subtypes, whereas the partition of genes
into different clusters potentially identifies disease-specific
co-expressed gene sets. NCIS was designed to operate
effectively with high-dimensional and high-throughput
gene expression data.

Summary

Network-assisted disease research has steadily evolved
during the past decade. During the early stages, network-
assisted approaches were restricted to identification of topo-
logical subnetworks or propagation of disease probability
through network information using disease-related prior
knowledge. However, as high-throughput and genome-
wide experimental assays have advanced, network-assisted
approaches emerged as a key solution to the complexity of
human disease research. Network-assisted approaches con-
tribute to hypothesis formulation by integrating external
data such as gene expression or mutation profiles with
network information. Network-assisted approaches also
facilitate interpretations of disease mechanisms. Some limit-
ations and challenges remain, such as the incompleteness of
molecular networks. However, it is certain that network-
assisted approaches will have crucial roles in unraveling
the biological complexity of human diseases in the future.
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