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a b s t r a c t

A cellular system may be viewed as a social network of genes. Genes work together to conduct physi-
ological processes in the cells. Thus if we have a view of the functional association among genes, we may
also be able to unravel the association between genotypes and phenotypes; the emergent properties of
interactive activities of genes. We could have various points of view for a gene network. Perhaps the most
common standpoints are proteineprotein interaction networks (PPIN) and transcriptional regulatory
networks (TRN). Here I introduce another type of view for the gene network; the probabilistic functional
gene network (PFGN). A ‘functional view’ of association between genes enables us to have a holistic
model of the gene society. A ‘probabilistic view’makes the model of gene associations derived from noisy
high-throughput data more robust. In addition, the dynamics of gene association may be presented in
a single static network model by the probabilistic view. By combining the two modeling views, the
probabilistic functional gene networks have been constructed for various organisms and proved to be
highly useful in generating novel biological hypotheses not only for simple unicellular microbes, but also
for highly complex multicellular animals and plants.

� 2011 Elsevier Ltd. All rights reserved.
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1. Introduction

Genes are social. Most genes collaborate with other genes to
conduct physiological processes in the cells or organisms. Their

strong social nature is analogous to that of human beings. The
sociality underlies the multi-functionalities of both humans and
genes. For example, a man may have multiple roles as a husband,
father, son, and friend in different social contexts by having
different relationships with his wife, children, parents, and friends,
respectively. Likewise, a single gene may be involved in various
cellular processes by having different collaborative gene partners.E-mail address: insuklee@yonsei.ac.kr.

Contents lists available at ScienceDirect

Progress in Biophysics and Molecular Biology

journal homepage: www.elsevier .com/locate/pbiomolbio

0079-6107/$ e see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.pbiomolbio.2011.01.003

Progress in Biophysics and Molecular Biology 106 (2011) 435e442



Author's personal copy

Therefore, the sociality of genes is an organisms’ fundamental
mechanism to create a larger number of traits than the number of
genes.

Social network modeling is a successful approach to study
human society. For instance, a social network enables the identi-
fication of hub individuals influencing a large number of people in
the society. Hub individuals are major targets in marketing strate-
gies. Recently, the similar network approach has become more
pragmatic in biology, because technologies for mapping connec-
tions between genes have dramatically improved during the last
decade. Thus now we can identify hub genes in gene networks and
observe a strong correlation between network centrality and
functional essentiality of genes not only in microorganisms (Jeong
et al., 2001) but also in animals (Lee et al., 2008). Social affinity of
genes may also be exploited to discover novel gene functions by
guilt-by-association (GBA) (Lee et al., 2006). Furthermore, it has
become more evident that many phenotypes are implemented in
the organismal system as communities of genes (Lee et al., 2008),
and functional interactions between the communities provideways
of modulating phenotypes (Lee et al., 2010b). Therefore, the
network modeling of a gene society will provide new opportunities
in genetics research and rational therapeutics.

The same gene society may be modeled by various network
views. First, the proteineprotein interaction network (PPIN) that
maps direct or indirect physical contacts between proteins is the
most popular modeling view of gene societies. This popularity is
rooted in recently advanced detection methods of proteineprotein
interaction (PPI) (Lalonde et al., 2008). The experimental detection of
PPIs, however, is still quite limited in animals andplants compared to
yeast, inwhich the consolidated set of PPIs covers themajority of the
proteome (Kim et al., 2010). In fact, there are many connections
between genes mediated by non-physical associations. Another
popular view of gene society is the transcriptional regulatory
network (TRN) that maps directional relationships from transcrip-
tional factors (TF) to their target genes. Experimental approaches
such as chromatin immuno-precipitation followed by a promoter
sequence analysis based on a DNA chip (ChIPechip analysis) or next
generation sequencing (ChIP-seq analysis) have suggested the
majority of the known TF-target gene relations (Kim et al., 2009).

In this article, I introduce a relatively newermodeling view of the
gene network; a probabilistic functional gene network (PFGN) that
maps functional associations between genes (Fraser and Marcotte,
2004; Lee et al., 2004). What would be merits of a probabilistic
functional view for modeling a gene network? How dowe construct
the PFGN? How do we utilize the PFGN for new biological discov-
eries? The entire workflow of network-driven biology from the
analysis of genomics data to the generation of new biological
hypotheses may be largely divided into two data integration steps:
(1) integrating diverse omics data into a probabilistic functional link
and (2) integrating multiple functional links into new biological
hypotheses. Currently PFGNs are used to generate three types of
biological hypotheses: (1) novel gene functions, (2) genetic dissec-
tion of complex phenotypes, and (3) novel genetic (epistatic) inter-
actions. I will describe the basic concepts, constructionmethods, and
recent progresses in the development of PFGNs for various organ-
isms and their contributions to modern genetics research.

2. Key ideas about the probabilistic functional view
of a gene network.

2.1. Why a functional view of the gene network?

Genes may connect to each other by various types of associa-
tions in the cell. For example, a set of genes for the same protein
complex are associated via physical contacts between proteins,

while another set of genes may work together for a biological
process without proteineprotein interactions. Each gene pair is
associated by specific types of connections e proteineprotein
interaction, regulatoretarget relation, co-expression, co-transcrip-
tion, and so forth. In other words, none of the specific types of
association alone can explain the entire interactive activities among
genes.

Then, what are the merits of a functional view over other
modeling views of the gene network? Functional association is
fuzzy and is a more generalized notion of geneegene relations that
may include more specific definitions of the association between
genes, such as the physical contact between gene products and
regulatoretarget relations. Thus the specific types of relations
between genes can be represented by a more inclusive type of
relation, the functional association. The consolidation of various
types of associations by using the more inclusive functional asso-
ciation results in a more extended coverage of genome by the gene
network. The extended coverage of the genome turns out to be
a critical factor determining the general predictive power of a gene
network (Lee et al., 2008; McGary et al., 2007). Extending the
coverage of gene networks is more challenging for higher eukary-
otes such as animals and plants, because of their larger search space
of pair-wise relationship modeling; the number of possible gene
pairs increases combinatorially as the number of genes does line-
arly. Therefore, the benefits from the functional view of the gene
network may be much bigger for higher animal and plant species
such as human and crops (Kim et al., 2010).

2.2. Why a probabilistic view of the gene network?

Then why is a probabilistic view more appropriate than a deter-
ministic view for modeling a gene network? First, the probabilistic
view of complex systems provides more robust models. In general,
genome-scale data used for modeling cellular systems are not
perfect in either accuracy or completeness. Thus a systemic model
constructed with incomplete and erroneous data would have
different view-qualities for different parts of the system; some parts
clear and the others blurry. The partially blurry view of the whole
systemneeds to be adjusted based on clarity of each part to enhance
the robustness of inference for the whole system. For example,
conclusions about a part of the system that is viewed unclearly
should be taken by a low probability score. Second, the dynamicity
of interactions between genes can be partially implemented by the
probabilistic view. Some gene-pair associations are highly stable
(e.g., genes for stable protein complexes such as ribosomes and
proteasomes), while others are context-specific (e.g., genes for
stress response). Most of the genesmay have different collaboration
partners for different biological contexts. This is actually the way
genes play multiple roles in the cells. We can assign higher proba-
bilities for more stable gene interactions, because amore consistent
interaction is more probable to be observed for a particular bio-
logical context. In the same sense, the gene interactions for rarer
contexts tend to be scored with lower probability. If we construct
a single static gene network modeling all possible cellular contexts,
the probabilistic view partially complements the lack of context-
specific information of the static model.

2.3. Two levels of data integration

Both the probabilistic and functional views enhance robustness
as well as completeness of the gene network model, because they
facilitate data integration in the bottom-up approach of system
modeling. The whole gene network is composed of various types of
functional relations among genes that are largely complementary
to each other. Therefore, well-designed data integration of the
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various experimental data and types of gene association improves
the power of inference about the gene network.

The whole process of learning biology from various omics data,
such as transcriptome, proteome, interactome profiles, to
a network-based hypothesis generation can be divided into two
levels of data integration: (1) integrating various omics data into
each probabilistic functional link, and (2) integrating multiple
functional links into new functional hypotheses. The quality of
a gene network model relies heavily on the accuracy of each link
between the genes. Upon integrating multiple omics data, we may
observe a general increase in the accuracy of many functional links
by multiple supporting evidences (Fig. 1A). The positive correlation
between the number of evidence and likelihood of a functional link
suggests that the reliability of each functional association between
genes improves with multiple supporting data. The next level of
data integration is subject to the functional links that may be
already the products of data integration. To generate hypotheses
about gene functions and others, we can use multiple links con-
nected to the query gene. Thus each new hypothesis is based on the
integration of information from multiple functional links to the
query gene. The comparison between the predictability of a gene
network by using only one nearest neighbor (i.e., one that is most
confidently connected to the network neighbor) and using all
neighbors of the query gene shows a clear difference (Fig. 1B). For
the rest of the article, I will describe the whole workflow from
diverse types of omics data to the new biological hypotheses with
two sections for each level of data integration.

3. Integrating diverse omics data into a probabilistic
functional link

3.1. Inference of functional links between genes

Nodes and edges are the basic building blocks of networks.
Accordingly, genes and functional associations between them are
basic building blocks of functional gene networks. There are various

types of omics data that are able to imply functional associations
between genes. I will describe four major classes of such data types
here.

First, proteineprotein interactions via physical contacts are
strong predictors of functional associations between protein coding
genes. Physical contacts mediate many functional communications
between gene products. Protein complexes conducting whole bio-
logical processes comprise multiple proteins physically associated
to each other. Signaling proteins convey cellular signals via a series
of physical contacts between them. Yeast two hybrid is perhaps the
most widely used experimental technique to detect proteinepro-
tein interactions. Thismethod has been employed for genome-wide
proteineprotein interaction mapping in various species including
yeast (Ito et al., 2001; Uetz et al., 2000; Yu et al., 2008), worm
(Li et al., 2004; Simonis et al., 2009), fly (Giot et al., 2003), and
human (Rual et al., 2005; Stelzl et al., 2005). Affinity purification
followed by mass spectrometry analysis (APMS) is another popular
large-scale proteineprotein interaction mapping method that has
been used for yeast (Gavin et al., 2006; Krogan et al., 2006) and
human (Ewing et al., 2007; Hutchins et al., 2010) so far.

Second, co-expression is a prevalent pattern supporting func-
tional associations between genes. Genes for the same biological
processes tend to co-express across various biological contexts. Huge
amount of microarray data are currently deposited into public
databases. Gene Expression Omnibus (Barrett et al., 2009) only
contained >470,000 array samples on September, 2010. With their
versatility by various meta-analysis and high sensitivity for gene
expression signals, mapping gene functional associations using gene
expression microarray data is recognized more importantly than
others now. For example, co-expression links cover >30%, >70%,
and >30% of the total functional links of yeast, worm, and Arabi-
dopsis gene networks, respectively (Lee et al., 2010a, 2010b, 2007).

Third, we can infer functional associations among genes by their
similar genomic context. There are three major genome-context
patterns we use currently: phylogenetic profiling pattern (Huynen
et al., 2000; Pellegrini et al., 1999; Wolf et al., 2001), gene

Fig. 1. Effects of two levels of data integration. (A) The effect of integrating multiple genomics data into each functional association. The latest version of the functional gene
network for yeast (Lee et al., 2007) has functional associations supported by various number of evidences, from a single evidence to eight at most. The number of supporting
evidence for each functional association positively correlates with its log likelihood score, indicating an improvement in inference power for each functional link by support from
more genomics data. The lines in the middle of the box represents the median and the two edges represent the top 25% and 75% of the log likelihood scores of the set of links
supported by same number of evidences, respectively. (B) Effect of integrating multiple functional links into new biological hypotheses. In the network, each gene may have
multiple neighboring genes. Functional inference by guilt-by-association may use either one nearest neighboring gene or all neighboring genes for each query gene. A network-
based classifier for known phenotypic genes can be assessed by the receiver operating characteristics (ROC) curve (Lehner and Lee, 2008). The predictability for known genes for
each of the 100 knock-out phenotypes (McGary et al., 2007) has been assessed by the area under the ROC curve (AUC) with two options of guilt-by-association. The box-and-
whiskers plot clearly shows an improved predictability by using all network neighbors including ones connected by weak associations.
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neighboring pattern (Bowers et al., 2004; Dandekar et al., 1998;
Overbeek et al., 1999), and gene fusion pattern (or Rosetta stone
protein) (Enright et al., 1999; Marcotte et al., 1999). During specia-
tion, descendants inherit a portion of the ancestors’ biological
processes. Because many cellular functions are carried at pathway-
level, proteins for the same pathways or processes are co-inherited.
This co-inheritance pattern can be detected from phylogenetic
profiles across many completely sequenced genomes. With the
advent of era of next generation sequencing (NGS), we expect a large
number of fully sequenced genomes at hands (Genome Online
Database (GOLD, http://www.genomesonline.org) reports >1300
fully sequenced genomes and w7000 genomes committed by
September 2010). The newly sequenced genomes will expand the
profile size, thus potentially provide more information. Conse-
quently, the usefulness of this method would extend to complex
eukaryotes such as animals and plants in near future. The next
genome-context approach, the gene neighboring method, uses
bacterial operon structures. In prokaryotes, genes involved in the
same metabolic pathway tend to be transcribed as a single mRNA
molecule encodingall themembers of the proteins on it, and thus the
co-transcriptional unit is called operon. Although eukaryotes have
lost the operon structure from their genomes during evolution, we
can deduce the context of eukaryotic proteins from their ancestral
prokaryotic genomes by orthology. If two eukaryotic genes
frequently have their orthologs in the proximal chromosomal loci of
prokaryotes, their ancestral genes would likely be located in the
same operon, thereby implicating functional association. The last
genome-context approach is the Rosetta Stone (gene fusion)
method. Two proteins encoded in separate loci on a genome could
have their orthologs in another genome fused into a single gene. The
gene fusion event in a different genome-context tends to supports
the functional association between two genes. We can efficiently
detect the gene fusion by ortholog mapping based on BLASTP
(Altschul et al.,1990) among genomes. However, the gene fusion also
suggests many promiscuous gene pairs that need to be filtered out
(Marcotte et al., 1999).

Fourth, the functional association between genes in an organism
may be transferred to another by their ortholog pairs which are
dubbed as associalogs (Lee et al., 2008). Each organism has study
bias towards different biological processes. Thus, borrowing func-
tional information from other organisms may compensate for less
studied parts of cellular systems. Noticeably we can predict many
plant specific traits by associalogs from animals or yeast (Lee et al.,
2010a). This observation indicates that not only the genes but also
the ‘gene associations’ are evolutionary reused for diverse biolog-
ical processes and traits in different species.

In addition to the above methods, gene functional associations
can be inferred also from domain co-occurrence patterns (Lee et al.,
2010a), co-citation patterns (Jenssen et al., 2001; Stapley and
Benoit, 2000), on tertiary structures of proteins (Aloy and Russell,
2003), and so forth. The introduction of a comprehensive list of
linkage discovery methods is beyond the scope of this review
article. As we observe continuous approaches to many novel types
of omics data, we expect to see many more new methods in
discovering the edge building blocks, the functional connections
between genes, in near future.

3.2. Construction of a probabilistic functional gene network

In cells or organisms, gene networks may be composed of
heterogeneous types of relationships. This heterogeneous nature of
relations among genes is in fact one of the major reasons why we
would benefit from using diverse omics data for the network
modeling. The potential of heterogeneity, however, comes with the
technical complication of integration. Different data types may

have intrinsically different predictive power. Moreover, individual
data sets based on the same technical platform may also result in
various qualities. Therefore, data standardization needs to precede
the integration. For efficient integration, a functional association
that represents an inclusive notion of gene interactions is advan-
tageous as we discussed earlier. The Bayesian statistics framework
of data standardization with a view of functional association has
been developed (Lee et al., 2004) and proved to be highly robust for
diverse data sets and organisms. The scoring scheme is called log
likelihood score (LLS),

LLS ¼ ln
�
PðAjEÞ=PðwAjEÞ
PðAÞ=PðwAÞ

�

where P (AjE) and P (wAjE) are the frequencies of gene associations
(A) observed with the given experimental evidence (E) between
annotated genes operating in the same biological processes and in
different processes, respectively, while P (A) and P (∼A) represent
the prior expectations (i.e., the total probability of associations
between all annotated genes operating in the same biological
processes and operating in different processes, respectively). A LLS
score that is greater than zero indicates that the data set supports
the associations between two genes in the same biological
processes, with higher scores indicating a more confident support
of the association. Fig. 2 illustrates an example of the log likelihood
score calculation from yeast mRNA expression profiles across
various cell-cycle conditions.

None of data sets is perfect, so that integration of multiple data
sets with various sensitivities and specificities for different areas of
cellular systems would improve not only the accuracy but also the
coverage of the gene network (Fig. 3). By standardizing the
heterogeneous data into a unified log likelihood score, we can
achieve data integration with a mathematical equation taking
account of the dependence among different data sets. Theweighted
sum (WS), a modified naïve Bayesian integration method to inte-
grate multiple LLS scores for a given gene pair was calculated as:

WS ¼ L0 þ
Xn
i¼1

Li
D$i

; for all L � T

where L0 represents the primary (i.e., highest) LLS score for a given
gene pair, D is a free parameter determining the decay rate of the
weight for secondary evidences, and i is the rank order index of
multiple LLS scores associatedwith a given gene pair. Ranking starts
from the second highest LLS with a descending magnitude for all n
remaining LLS scores. To exclude noisy linkage information, we
consider only the LLS scores above the empirically chosen threshold
T during integration. The free parameterD ranges from1 toþN, and
is optimized to maximize the overall performance of the integrated
model, assessed by a precision-recall curve for the recovery of test
set gene pairs. As the optimal value of D approaches þN, WS
approaches the L0, and the lower scoring LLS scores do not provide
any additional information, implying that all data sets are
completely interdependent. Each individual geneegene association
may have a different data type with its primary LLS. We indepen-
dently test the performance of a naïve Bayesian integration of the
LLS scores (which is simply the sum of the LLS scores for each given
gene pair), then select the integration model that maximizes the
area under the plot of LLS versus coverage of genes incorporated in
the network.

3.3. Probabilistic functional gene networks for various organisms

We have constructed probabilistic functional gene networks
(PFGN) for various organisms e baker’s yeast Saccharomyces
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cerevisiae (Lee et al., 2004, 2007), a simple animal Caenorhabditis
elegans (Lee et al., 2008, 2010b), and the reference plant Arabidopsis
(Lee et al., 2010a) during the past several years. Unlike proteine
protein interaction network (PPIN), PFGN covers the majority of
genes for even animals and plants with large genome sizes
(Table 1). Consequently, we can generate novel biological hypoth-
eses for more genes with PFGN than with PPIN. One reason for the
high genome coverage of PFGN is the transferred network-linkage
information among different organisms by orthology. Each
organism has its own niche in modeling biological processes. For
example, yeast have largely contributed in understanding basic
biological processes such as transcription and translation, the
worm is a major model system in studying programmed cell death
and aging, and Arabidopsis is an excellent system to study stress
responses. Because yeast, worm, and Arabidopsis all share many of

such physiologies, a new discovery about a particular biological
process from one of organisms may contribute to the network of
other organisms in which study of the same biological process is
not accessible yet. In other words, PFGNs for various organisms
have been constructed by another level of data integration, inte-
grating network-linkage data from multi-organisms. One inter-
esting observation during PFGN construction using information
transfer among multi-organisms was that the functional gene
association of animals contributes to modeling plant specific bio-
logical processes such as trichome development (Lee et al., 2010a).
Construction of PFGNs of human and crops will be feasible with
similar modeling framework in near future.

4. Integrating multiple functional links into new
biological hypotheses

Data integration with a functional view as described above
provides highly accurate and comprehensive gene networks. What
then can we do with the gene networks for a novel biological
discovery? Indeed, the “how-to-use” is more important than “how-
to-make” in the field of network biology. Here, we propose the
guilt-by-association (GBA) approach ushering to the discovery of
novel gene functions, genetic dissection of complex phenotypes,
and mapping of epistatic interactions between genes. The genera-
tion of biological hypotheses from guilt-by-association using
multiple network links is another level of the data integration
process that improves the inference power.

4.1. Discovery of gene functions

Network-based inference has been applied to various complex
systems. Guilt-by-association (GBA) is amajor approach of network-Fig. 3. Improvement of both accuracy and coverage of gene functional network by

integration of diverse omics data. The latest version of the functional gene network of
yeast (Lee et al., 2007) was trained by Gene Ontology annotations (Christie et al., 2009).
Thus reference gene pairs by sharing the same MIPS (The Munich Information center
for Protein Sequence) functional annotation (Mewes et al., 2002) could be an inde-
pendent test set for assessing the quality of networks by individual data sets and the
integrated network. The quality of each network was measured by the percentage of
gene pairs sharing the same MIPS functional annotations (accuracy) and the
percentage of genome (coverage) for the set of gene pairs at every thousand gene pairs
in cumulative manner. The resulting curve suggests a clear qualitative improvement in
both accuracy and coverage of the integrated network compared to any other networks
based on a single data set.

Fig. 2. Calculation of log likelihood score of functional association derived from gene expression data. (A) Genes operating same biological processes tend to co-express through the
course of gene expression experiments. Thus, the Pearson correlation coefficient (PCC) of two genes’ expression vectors shows a positive correlation with their frequency of sharing
pathway annotation. For example, yeast mRNA co-expression patterns across various cell-cycle conditions (Spellman et al., 1998) were compared to their frequencies participating in
the same KEGG pathways (Kanehisa et al., 2002), and plotted for all annotated gene pairs as a function of PCC. The frequencies of gene pairs sharing KEGG pathways for each PCC
value (P (AjE)) were calculated for bins of 20,000 gene pairs, and showed strong correlations with the PCC. In contrast, the frequency of gene pairs not sharing the pathway
annotation (P (∼AjE)) showed no significant correlation with the PCC. (B) The ratio of these two frequencies that were normalized by the prior expectation (P (A) and P (∼A)) and
transformed by logarithm provided the log likelihood scores (LLS) belonging to the same pathway for each PCC. Using a regression model for the relationship between PCC and LLS,
we can assign LLS to all gene pairs with PCC (including gene pairs that are not annotated). This figure has been adapted from Lee et al. (2004).

Table 1
Functional gene networks for various organisms.

Organism Genome coverage
(# gene)

# links URL of network database

Yeast 95% (5483) 102,803 www.functionalnet.org/yeastnet
C. elegans 75% (15,139) 999,367 www.functionalnet.org/wormnet
Arabidopsis 73% (19,647) 1,062,222 www.functionalnet.org/aranet
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based inference about functions of network nodes, such as indi-
vidual persons of a social network or individual genes of a gene
network. In human society, people who work for the same task
functionally connect to each other, forming a task-oriented
community. Example task-oriented communities in human society
are advisory boards, managing committees, academic institutions,
and so on. Similarly, genes for the same biological process tend to
connect to each other in functional gene networks and thus form
functionalmodules. Therefore, if we have a set of genes known to be
involved in a particular biological function and are interconnected
in the gene network, uncharacterized genes that are connected to
the functionally known genes are likely to be novel candidate genes
for the same function (Fig. 4A). The feasibility of GBA in identifica-
tion of gene functions has been experimentally validated by
discovery of novel yeast ribosomal biogenesis genes (Li et al., 2009).

4.2. Genetic dissection of complex phenotypes

One of the fundamental goals in genetics is mapping
genotypeephenotype associations. Gene-to-trait links are critical
information platforms to step towards manipulating and engi-
neering traits, for example, chemical inhibition of disease genes
to manipulate disease symptoms, or genetic engineering of stress
response genes in crops to enhance their stress resistance. Most
of phenotypes are complex, that is, they cannot be explained
by activity of a single gene, but rather by complex interactions
among many genes. Thus, complex phenotypes are emergent
properties of complex interactive activities among many genes.
Genetic alliance among genes for a given complex phenotype can
be dissected by identifying all component genes and mapping
interactions among them.

Dissecting complex phenotypes into individual component
genes may be facilitated by GBA for the discovery of gene functions.
The GBA approach may work to study complex phenotypes
provided with one assumption that genes modulating a complex
phenotype are members of the same pathway or closely related
pathways. Then we would see well-interconnected genes for the
same phenotype in the functional gene network. If the known
phenotypic genes satisfy this condition (Fig. 4A), new candidate
genes for the same phenotype can be inferred from network
neighbors.

Then, are all network neighbors of known phenotypic genes
confident candidates? A given gene network may not be highly
predictable for all phenotypes, mainly by two reasons. First, none of
networks is perfect. This is a general problem of network-based
biological predictions. Second, the genetic nature of a given

phenotype itself could be not-so-modular. In other words, genes
participating in processes that are distantly apart from each other
in the network contribute to the same phenotype. In this case,
genes for the same phenotype may be sparsely distributed in the
network; consequently, they are not well-interconnected in the
network. Therefore, the GBA approach to genetic dissection of
complex phenotypes requires a pre-evaluation of modularity of
known phenotypic genes in the network (Lehner and Lee, 2008).
The feasibility of the GBA approach in the discovery of phenotypic
genes has been experimentally validated by elongated yeast cell
morphology (McGary et al., 2007), suppressors of retinoblastoma
(Rb) related tumorigenesis in C. elegans (Lee et al., 2008), and
Arabidopsis seed pigmentation (Lee et al., 2010a). These results
strongly suggest that the same network-based predictionworks for
gene-to-trait mapping not only for a simple unicellular organism
but also for more complex multicellular animals and plants that
have multiple types of tissues and cells.

4.3. Prediction of epistatic interactions

Unraveling the genetic organizations of complex phenotypes
also requires a map of non-additive functional interactions among
genes for each phenotype. An inheritable portion of a phenotype is
explained by the collective effects derived from all member genes.
However, a combination of multiple genes does not always show
a simple additive effect. Some pairs of double mutations cause
a much severer or alleviated phenotypic effect than a simple
addition of two individual mutational effects (Dixon et al., 2009).
Recently, this non-additive combination of genetic variation on
phenotype e namely epistasis e is thought to be one of the major
reasons for the missing inheritance of complex traits during the
genome-wide association study (GWAS) that usually focuses on the
phenotypic effect of a single polymorphic position (Manolio et al.,
2009). Therefore mapping the epistatic interaction between
genes would be a key path towards understanding the genetic
organization of complex traits. For example, epistatic interactions
between hub cancer genes such as p53 and other cancer related
genes would provide important clues in understanding the mech-
anism of tumorigenesis (Uren et al., 2008).

There are two different types of epistatic interactions: within-
pathway interaction and between-pathway interaction (Boone
et al., 2007). The classification is based on their locations in the
pathwaymap such as PPIN and PFGN. Genes for the same pathways
or functional modules are highly interconnected and usually result
in local community structures in PPIN and PFGN. Awithin-pathway
epistatic interaction is observedwithin a local network community.

Fig. 4. Guilt-by-association approach to discovery of new gene function, genetic dissection of complex phenotypes, and discovery of epistatic interactions. (A) Black nodes represent
genes that are known to be of the same function or involved in the same phenotype. Because the known genes are well-interconnected in the example, their network neighbors
(grey nodes) may also be member genes for the same function or phenotype. (B) If we have pre-identified genetic modifier (black nodes) for a particular phenotypic gene (the
diamond shaped node) and they are well-interconnected in the network, they may also participate in the same pathway or process. Then, other genes for the same pathway or
process (grey nodes connected to the black nodes) may also be novel genetic modifiers for the same phenotypic gene.
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On the contrary, a between-pathway epistatic interaction is
observed between two local network communities. During the last
decade, geneticists have accumulated a large amount of epistatic
interaction data through systematic high-throughput experiments,
especially in two fungal species, S. cerevisiae (Costanzo et al., 2010)
and Schizosaccharomyces pombe (Roguev et al., 2007), and in an
animal species, C. elegans (Lehner et al., 2006). From the systematic
and comparative analyses of these large-scale epistatic interaction
networks, systems biologists found the following general proper-
ties of epistatic interactions: (1) Epistatic interactions are enriched
for between-pathway interactions (Kelley and Ideker, 2005). (2)
The evolutionary conservation of epistatic interactions among
species is much lower than that of proteineprotein interactions or
functional associations (Roguev et al., 2008; Tischler et al., 2008).
The low evolutionary conservation of epistatic interactions
suggests that simple interologse interactions between orthologs e
mapping (Yu et al., 2004) would not be effective for discovery of
epistatic interactions. Yeast interologs have proved to be highly
effective in the discovery of new proteineprotein interactions in
humans (Lehner and Fraser, 2004), but may not be true for the
discovery of human epistatic interactions.

The discovery of new epistatic interactions, however, can be
facilitated by the functional gene network. As seen in Fig. 4B, if the
majority of known genetic modifiers (epistatic interactors) for
a particular phenotypic gene (e.g., a disease gene) participates in
the same pathway (i.e., they are well-interconnected in the gene
network), one may easily predict new modifiers for the same
phenotypic gene from network neighbors of the known modifiers.
Using this approach, a total of 31 novel genetic modifiers for three
worm signal transduction genes have been identified with 7.3-folds
enrichment compared to the previous screens that were based on
semi-random candidates (Lee et al., 2010b).

5. Conclusions

The pleiotropy of genes and the complexity of phenotypes are all
emergent properties of interactive activities among genes. Thus
obtaining themap for a genenetwork is an important goal inmodern
systems biology. Among many possible modeling views of a gene
network, the probabilistic functional view provides advantages in
efficient integration of heterogeneous genomics data to construct
amore accurate and comprehensivemodel. In addition, the network
model itself allows opportunities for a higher level of data integra-
tion to generate more confident biological hypotheses. To date, the
probabilistic functional view has been successfully used in con-
structing network models for a unicellular microbe yeast, a simple
multicellular animal worm, and the reference plant Arabidopsis.
These earlier accomplishments suggest an optimistic future devel-
opment for gene network models for humans and crops. The
network-based approaches in medical and agricultural researches
may bring a new paradigm to a more predictive and cost-effective
genetic analysis to clinically and economically important pheno-
types such as complex diseases in humans and stress resistance in
food or energy crops. The initial goal of systems biology was to learn
more about the whole organismal system. After all, we may learn
more about individual genes from the systemic model, just like the
way we learn about a person via the analysis of his social network.
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