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Cellular functions are mediated through complex systems of macromolecules and metabolites
linked through biochemical and physical interactions, represented in interactome models as ‘nodes’
and ‘edges’, respectively. Better understanding of genotype-to-phenotype relationships in human
disease will require modeling of how disease-causing mutations affect systems or interactome
properties. Here we investigate how perturbations of interactome networks may differ between
complete loss of gene products (‘node removal’) and interaction-specific or edge-specific (‘edgetic’)
alterations. Global computational analyses of B50 000 known causative mutations in human
Mendelian disorders revealed clear separations of mutations probably corresponding to those
of node removal versus edgetic perturbations. Experimental characterization of mutant alleles in
various disorders identified diverse edgetic interaction profiles of mutant proteins, which correlated
with distinct structural properties of disease proteins and disease mechanisms. Edgetic perturba-
tions seem to confer distinct functional consequences from node removal because a large fraction
of cases in which a single gene is linked to multiple disorders can be modeled by distinguishing
edgetic network perturbations. Edgetic network perturbation models might improve both the
understanding of dissemination of disease alleles in human populations and the development of
molecular therapeutic strategies.
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Introduction

Decades of research into human Mendelian disorders has led
to the discovery of a massive amount of disease-associated
allelic variations. Most disease-causing mutations are thought
to confer radical changes to proteins (Wang and Moult, 2001;
Botstein and Risch, 2003; Yue et al, 2005; Subramanian and
Kumar, 2006). Consequently, genotype-to-phenotype relation-
ships in human genetic disorders are often modeled as:
‘mutation in gene X leads to loss of gene product X, which
leads to disease A’. A single ‘gene-loss’ model seems pertinent

for many diseases (Botstein and Risch, 2003). However, this
model cannot fully reconcile with the increasingly appreciated
prevalence of complex genotype-to-phenotype associations for
even ‘simple’ Mendelian disorders (Goh et al, 2007), particu-
larly in which: (i) a single gene can be associated with multiple
disorders (allelic heterogeneity), (ii) a single disorder can be
caused by mutations in any one of several genes (locus
heterogeneity), (iii) only a subset of individuals carrying a
mutation are affected by the disease (incomplete penetrance),
or (iv) not all individuals with a given mutation are affected
equally (variable expressivity). More complex models to
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interpret genotype-to-phenotype relationships would probably
improve the understanding of human disease.

Genes and gene products function not in isolation but as
components of complex networks of macromolecules (DNA,
RNA, or proteins) and metabolites linked through biochemical
or physical interactions, often represented in ‘interactome’
network models as ‘nodes’ and ‘edges’, respectively. Cellular
networks seem to exhibit systems properties underlying
phenotypic variations (Goh et al, 2007). Here we propose
network-perturbation models to explain molecular dysfunc-
tions underlying human disease.

We hypothesize that distinct mutations causing distinct
molecular defects to proteins may lead to distinct perturba-
tions of cellular networks, giving rise to distinct phenotypic
outcomes (Figure 1A). Truncations close to the start of an
open-reading frame, or mutations that grossly destabilize a
protein structure, can be modeled as removing a protein node
from the network (‘node removal’). Alternatively, single
amino-acid substitutions that affect specific binding sites, or
truncations that preserve certain domains of a protein, may
give rise to partially functional gene products with specific
changes in distinct biophysical or biochemical interaction(s)
(edge-specific genetic perturbation or ‘edgetic’ perturbations;
Figure 1B).

Edgetic network perturbations provide alternative molecu-
lar explanations for protein dysfunction in addition to gene
loss. Taking advantage of the large number of known disease-
causing allelic variations in human Mendelian disorders, we
investigated how such mutations may cause complete loss of

gene products or, alternatively, cause specific loss or gain
of distinct molecular interaction(s). We further tested edgetic
perturbation models in cases in which a single gene is asso-
ciated with multiple disorders. Together, both experimental and
computational evidence support edgetic perturbation models
in human inherited disorders. Edgetic perturbations probably
underlie many complex genotype-to-phenotype relationships.

Results

Global distribution of disease-causing mutations

To investigate possibly differing network perturbations in
human inherited disorders, we examined B50 000 Mendelian
disease-causing alleles, affecting over 1900 protein-coding
genes, altogether associated with more than 2000 human
disorders available in the Human Gene Mutation Database
(HGMD) (Stenson et al, 2003). We differentiated all disease
alleles into two subsets probably causing different molecular
defects to proteins. The first subset (‘truncating’ alleles)
comprises all mutations that lead to the synthesis of truncated
gene products, including nonsense mutations, out-of-frame
insertions or deletions, or defective splicing. The second
subset (‘in-frame’ alleles) comprises mutations that probably
give rise to nearly full-length gene products, including
missense mutations and in-frame insertions or deletions. Over
50% (27 919/52 491) of Mendelian alleles in HGMD corre-
spond to ‘in-frame’ alleles (Figure 2A). Our hypothesis is that
‘truncating’ and ‘in-frame’ alleles probably cause distinct
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Figure 1 Node removal versus edgetic perturbation models of network changes underlying phenotypic alterations. (A) Schematic illustration of pleiotropic phenotypic
outcomes resulting from distinct network perturbations upon complete loss of gene product (node removal, blue box) versus perturbation of specific molecular
interactions (edgetic perturbation, red box). Solid lines between two nodes represent preserved interactions and dashed lines represent perturbed interactions. Edges
are generally biophysical interactions, but could also be biochemical interactions. (B) Schematic illustration of distinct ‘truncating’ versus ‘in-frame’ mutations causing
distinct molecular defects in proteins leading to distinct node removal versus edgetic perturbation.
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molecular defects in proteins, and are thus enriched in distinct
node removal or edgetic perturbations, respectively. This hypo-
thesis is based on the assumption that ‘truncating’ alleles are
less prone to produce stably folded proteins than ‘in-frame’
alleles. Although exceptions may apply, our hypothesis predicts
that ‘truncating’ versus ‘in-frame’ alleles may distribute differ-
ently among diseases involving distinct node removal versus
edgetic perturbations.

Given that, with the exception of haploinsufficiency, many
established molecular explanations for dominance entail
production of a mutated protein that interferes in some way
with the function of the product of the normal allele,
autosomal dominant disease should be more frequently
associated with edgetic perturbation than node removal
(Figure 2B). To test the hypothesis that ‘truncating’ versus
‘in-frame’ alleles are enriched in distinct node removal versus
edgetic perturbations, respectively, we retrieved the inheritance
information, by manual curation, for each HGMD-annotated
phenotype from the Online Mendelian Inheritance in Man
(OMIM) database (Hamosh et al, 2005). ‘Truncating’ versus
‘in-frame’ alleles distribute differently among autosomal
dominant and autosomal recessive traits. Among genes
affected solely by ‘in-frame’ mutations, the proportion of
autosomal dominant diseases is B10-fold higher than that of
autosomal recessive diseases (Figure 2C). This trend holds

even after removing all human predicted orthologs of essential
genes from the analysis (Supplementary Figure S1).

We next examined whether distinct distribution of ‘truncat-
ing’ versus ‘in-frame’ alleles can also be found among
autosomal dominant traits that are probably caused by
different molecular mechanisms. Mutations in cytoskeleton
proteins frequently cause dominant-negative effects, in which
incorporation of expressed abnormal molecules into multi-
meric assemblies of structural proteins disrupts the integrity
and function of the complex (Wilkie, 1994). In contrast,
germline mutations in transcription factors are more fre-
quently associated with haploinsufficiency (Wilkie, 1994;
Seidman and Seidman, 2002) probably because of insuffi-
cient activity or production of the remaining wild-type allele
in heterozygotes. Consistent with this distinction, a signif-
icantly higher fraction of ‘in-frame’ mutations was found for
autosomal dominant Mendelian disorders associated with
structural proteins than with transcription factors (Figure 2D).

Distinct global distributions of ‘truncating’ versus ‘in-frame’
mutations among diseases with distinct modes of inheritance,
and in proteins probably associated with distinct molecular
mechanisms of dominance, support our hypothesis that
‘truncating’ versus ‘in-frame’ alleles are probably enriched
in distinct node removal versus edgetic perturbations,
respectively. The distinctions observed between autosomal
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Figure 2 Global patterns of disease mutations in human genetic disorders. (A) Subdivision of ‘truncating’ versus ‘in-frame’ mutations in Human Gene Mutation
Database (HGMD) (Stenson et al, 2003). (B) Schematic illustration of distinct node removal versus edgetic perturbation models in disease with autosomal recessive
versus autosomal dominant inheritance. (C) Distribution of autosomal recessive and dominant disease with respect to the associated ‘in-frame’ mutations. Mutations in
each gene associated with each mode of inheritance are grouped as one trait. Each data point represents the fraction of autosomal recessive (blue bar) or autosomal
dominant (red bar) traits that have a fraction of ‘in-frame’ mutations no less than the value on the x-axis. Statistical significance of the observed difference between
distributions is assessed by Mann–Whitney U test (Po9.2� 10�12). The number of traits, genes, diseases and total mutations in each bin are provided
in Supplementary Table 1. (D) Average fraction of ‘in-frame’ mutations associated with autosomal dominant disease in transcription factors and structural proteins.
P-value assessed by Mann–Whitney U test of the observed difference is shown.
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dominant and autosomal recessive mutations may be more
pronounced if haploinsufficiency could be separated overall
from dominant-negative and other molecular mechanisms of
dominance, but such information is currently unavailable at
the global level.

Distinguishing edgetic perturbation from node
removal

For a proof-of-principle analysis of allele-specific network
perturbations by disease proteins, we used an integrated
experimental approach to characterize binary protein interac-
tion defects of disease-causing mutant alleles. Our approach
includes (i) Gateway recombinational cloning of mutations
by PCR-based site-directed mutagenesis (Suzuki et al, 2005),
(ii) high-throughput mapping of binary protein–protein inter-
actions (Rual et al, 2005), (iii) high-throughput characterization
of protein–protein interaction defects of all cloned disease-
causing mutant proteins, and (iv) integration of network
perturbations by disease-causing mutations with structural or
functional information of disease proteins.

We selected disease proteins that have: (i) multiple mutations
annotated in HGMD (Stenson et al, 2003), (ii) wild-type clones
available in our human ORFeome collection, hORFeome 3.1
(Lamesch et al, 2007), (iii) structural information available
in Protein Data Bank (PDB, http://www.rcsb.org/pdb), and
(iv) two or more interactions reported in our previous binary
human interactome map (Rual et al, 2005). We also requested
that at least one of the observed interactions by yeast
two-hybrid (Y2H) analysis be supported by functional

characterization in the literature. Given these criteria, we
could apply our allele-profiling platform to one autosomal
recessive disease protein (CBS), and to three autosomal
dominant disease proteins with likely dominant-negative
(ACTG1), abnormal activation (CDK4), or haploinsufficiency
(PRKAR1A) molecular defects (Figure 3A). We included one
additional autosomal recessive disease protein (HGD) that
meets all criteria except that no protein–protein interaction
data were available (Figure 3A). We carried out a genome-wide
Y2H screen against a set ofB8100 human open-reading frames
(Rual et al, 2005), and identified three interactions for wild-
type HGD. We cloned disease-causing mutants annotated in
HGMD for these five proteins and profiled each mutant against
the corresponding wild-type interactors.

Profiling interaction defects of 29 alleles associated with five
distinct genetic disorders revealed three classes of interaction-
defective alleles (Supplementary information and Figure 3B):
(i) five alleles that behaved as null, eliminating all interactions,
(ii) 16 edgetic alleles that lost specific interaction(s) while
retaining other interactions, and (iii) eight alleles that behaved
as ‘pseudo-wild-type’, retaining all currently available protein–
protein interactions tested here. Null-like alleles were observed
only for two autosomal recessive disease proteins (CBS and
HGD) and in a supposed case of dominant haploinsufficiency
(PRKAR1A), consistent with differing network perturbations
in diseases associated with distinct modes of inheritance
(Figure 2B). We propose that many disease-causing alleles
scoring as pseudo-wild-type in the assay described here might
still be true edgetic alleles. Further analysis with additional
physical and biochemical interactors using additional assays
should eventually settle that question.

P145LL539SI278T P422L

FXR2

CBS

P49LCBS

L25PR225HE42A      V300G

NIF3L1

H371R

NUDT18

HGD

HGD

P322AP264L

CFL2

K118M

DSTN

ACTG1

T89IACTG1

ACTB

CFL1
T278I

R24CR24H

CDKN2D

S52NN41SCDK4
CCND3

CDKN2C CDKN2B

R42XQ28X Q37X

PLEKHF2 AKAP10

R97X Q166X R228X

Full-length wild-type clones

in hORFeome 3.1

�1 PDB structure(s)

>3 mutations in HGMD

�2 interactions in CCSB-HI1

(�1 interaction(s) also

reported in the literature)

Autosomal
recessive

Autosomal
dominant

CBS
Homocystinuria

HGD
Alkaptonuria

ACTG1
Hearing loss

CDK4
Melanoma

PRKAR1A
Carney complex

MGC13057

PRKAR1A

Pseudo-
wild type

Edgetic
perturbation

Wild type Node
removal

Autosomal
recessive

Autosomal
dominant

R74C
Q304X
S307X

K63X

C6orf55

A B
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We related Y2H interaction profiles of each mutant to
structural properties of disease proteins (Supplementary
information and Supplementary Figure S2–6). Grossly dis-
ruptive mutations tend to affect buried residues of the protein,
whereas mutations leading to loss or gain of specific
interaction(s) tend to lie on the surface. Edgetic perturbation
of some disease alleles revealed diverse molecular mechan-
isms of protein dysfunction (Supplementary information).
Complex allele-specific perturbations were also found to
be associated with phenotypic variability among patients,
such as their response to specific treatments (Supplementary
information for CBS).

Structural analyses of disease-causing mutations

To further investigate the extent to which mutations found
in human genetic disorders may grossly disrupt proteins
or cause alterations in specific biochemical or biophysical
interaction(s), we examined available three-dimensional struc-
tures of all disease proteins. As grossly disruptive mutations
versus mutations leading to loss or gain of specific interaction(s)
probably distribute differently on protein structures (Figure 4A),
we divided missense disease-causing mutations into three
non-redundant categories: buried residues (o5% of surface
accessible to water), exposed residues (X30% of surface
accessible to water), and residues with intermediate expo-
sure (5–30% of surface accessible to water). Among all 3664
affected residues in 236 proteins for which three-dimensional
X-ray structures are available, about one-third of the mutated

residues are buried, whereas another one-third are exposed,
probably representing complete loss of gene products versus
loss or gain of specific molecular interaction(s), respectively
(Supplementary Figure S7). Consistent with differing network
perturbations in disease with distinct modes of inheritance
(Figure 2B), autosomal dominant versus autosomal recessive
disease mutations exhibit significant separation with respect to
their solvent-accessible surface areas (Po3�10�10; Figure 4B).
About 40% of mutated residues in autosomal dominant disease
are exposed (with relative solvent-accessible surface areas
X30%), whereas only 27% of mutated residues in autosomal
recessive disease fall in the same category (Figure 4B).

Allele-specific perturbations observed in PRKAR1A (Sup-
plementary Figure S6) indicate that interaction-specific per-
turbation by truncations is also possible. As ‘truncating’ alleles
outside of protein domains may preserve function of certain
domains, giving rise to interaction-specific perturbations
(Figure 4C), we determined the distribution of ‘truncating’
mutations in Pfam domains (Finn et al, 2006). Although
disease-causing ‘truncating’ mutations seem to exhibit a
random distribution with respect to Pfam domains (enrich-
ment: 1.0, P¼0.2), ‘truncating’ mutations in autosomal
dominant disease are slightly depleted in Pfam domains,
whereas ‘truncating’ mutations in autosomal recessive disease
are slightly enriched in Pfam domains (Figure 4D). This
finding is consistent with the hypothesis that different
‘truncating’ mutations may cause distinct node removal versus
edgetic perturbations giving rise to disease with distinct
modes of inheritance. In agreement with distinct molecular
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mechanisms of dominance (Figure 2B), we found a depletion of
autosomal dominant ‘truncating’ mutations in Pfam domains
for structural proteins against an enrichment for transcription
factors (Figure 4D), probably associated with dominant-
negative effects versus haploinsufficiency, respectively.

Node removal versus edgetic perturbation
in complex gene-disease associations

The complex patterns of disease mutations noted so far
indicate that a substantial fraction of causative alleles in
human genetic disorders may cause edgetic perturbations
rather than node removal. Distinct network perturbation
models, leading to distinct phenotypic outcomes (Figure 1),
predict that ‘truncating’ versus ‘in-frame’ alleles for a given
gene product might cause different diseases (Figure 5A). We
therefore examined 142 genes associated with two or more
diseases for which at least five distinct alleles have been
reported for each disease. Among 278 disease pairs, each
associated with a single one of these 142 genes, we found 88
pairs (B30%) for which the proportion of ‘in-frame’ versus
‘truncating’ mutations is significantly different between the
two diseases (Po0.05; Figure 5B and Supplementary Table 2).
A noteworthy example involves the four types (I, II, III, and IV)
of osteogenesis imperfecta (OI) with COL1A1 ‘in-frame’
mutations causing strikingly more severe phenotypes (in type
II, III, or IV) than ‘truncating’ mutations involved in type I
(Hamosh et al, 2005; Figure 5B).

Among 34 genes that are linked to both autosomal dominant
and autosomal recessive disorders, the fraction of ‘in-frame’
versus ‘truncating’ mutations per gene is significantly higher
for autosomal dominant mutations than for autosomal
recessive ones (Supplementary Figure S8). This finding further
supports our hypothesis that distinct ‘in-frame’ versus
‘truncating’ mutations probably cause distinct network
perturbations giving rise to disease with distinct modes
of inheritance (Figure 2).

Edgetic interaction profiles of CBS and PRKAR1A mutant
proteins (Figure 3) revealed possible connections between
allele-specific interaction defects and differential treatment
responses or phenotypic severity among patients (Supplemen-
tary information). In addition to clinical variability, edgetic
perturbation models also predict that distinct edgetic pertur-
bations for a given gene product might cause phenotypically
distinguishable disorders (Figure 6A). We used predicted Pfam
domains as surrogates for functional protein domains (Sam-
mut et al, 2008), assuming that ‘in-frame’ mutations located in
different Pfam domains probably alter protein functions
differently. Among 169 genes associated with two or more
diseases and encoding proteins containing at least two Pfam
domains, 77 had significant enrichment of ‘in-frame’ muta-
tions in Pfam domains (Po0.05). There were nine proteins with
at least two Pfam domains significantly enriched with ‘in-
frame’ mutations (Po0.05). For each of the nine proteins, we
found a striking pattern of near mutual exclusivity, whereby
different Pfam domains seem to be specifically affected in
distinct disorders (Figure 6B and Supplementary Table 3). A
compelling example is TP63 (van Bokhoven and Brunner,
2002) in which two clinically distinct developmental disorders,
ectrodactyly ectodermal dysplasia (EEC) and ankyloblepharon
ectodermal dysplasia (AEC), are caused by mutations in two
separate domains, one predicted to bind DNA and the other to
mediate protein–protein interaction(s) (Figure 6B). Current
information on protein functional domains is incomplete, thus
limiting the resolution for distinguishing phenotypes and
genotypes. With more detailed structural and biochemical
information available, more such allele-specific edgetic
phenotype-to-genotype correlations should be uncovered.

Discussion

There are commonalities behind disease mutations that have
been discerned, such as disease mutations tend to present at
highly conserved regions and to confer radical changes to
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proteins (Wang and Moult, 2001; Botstein and Risch, 2003; Yue
et al, 2005; Subramanian and Kumar, 2006), but there are more
complexities to disease mutations and these should not be
overlooked. Here we uncovered both experimental and computa-
tional evidences that strongly support distinct network perturba-
tions in human Mendelian disorders resulting from complete
loss of gene products (node removal) or specific alterations
in distinct molecular interaction(s) (edgetic perturbation),
respectively (Figures 2–4). Distinct edgetic network perturbations
probably underlie many complex genotype-to-phenotype rela-
tionships in human genetic disorders (Figures 5 and 6) supporting
the idea that edgetic perturbation versus node removal may
confer fundamentally different functional consequences.

Edgetic network perturbation models focus on specific
alterations in distinct molecular interactions. Although the
‘node-centered’ gene knockout or knockdown approaches
are convenient and useful in determining effects of gross
disruption of proteins in model organisms, an ‘edge-centered’
allele-profiling approach, as carried out here and elsewhere
(Dreze et al, in press), dissects the dynamics and complexities

of biological systems, in which different interactions may
occur independently, and in which a single protein may carry
out different functions with different partners or in different
biological contexts. Edgetic alleles with suboptimal but largely
preserved molecular interactions may become insufficient
when expressed at reduced levels or may become less stable.
Such properties of edgetic alleles may be regulated by other
genetic or environmental factors. In this regard, functional
characterization of edgetic alleles may help explain pheno-
typic variations among patients, such as incomplete pene-
trance or variable expressivity, as well as differential clinical
treatment responses (e.g. CBS alleles, Supplementary informa-
tion). In addition, edgetic network perturbation models might
improve our understanding of why and how disease alleles
have disseminated in human populations.

Just as high-throughput sequencing technologies are
revolutionizing genotyping platforms, and as functional
genomics and proteomics are becoming increasingly able to
characterize gene products resulting from whole genome
sequencing and gene prediction, functional characterizations
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perturbations giving rise to distinct disorders. (B) Enrichment of ‘in-frame’ mutations causing different disorders in different Pfam domains. Color intensity of Pfam
domains represents fold enrichment of each disease associated ‘in-frame’ mutations (Po0.05). Vertical lines below corresponding Pfam domains mark disease-causing
‘in-frame’ mutations in TP63.
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of genetic variations may be applied at large-scale to charac-
terize mutations with uncertain pathological consequences.

We considered the effects of disease-causing mutations on
physical protein–protein interactions, perturbation of which
has emerged as a characteristic shared by many disease
mutations (Ye et al, 2006; Hsu et al, 2007; Schuster-Böckler and
Bateman, 2008). Complete understanding of network pertur-
bations in disease would require comprehensive analysis of
disease mutant proteins by integration of data available from
multiple functional assays. First, the current interactome
network derived from Y2H analysis is probably incomplete.
Many biologically relevant interactors remain to be tested and
many may not be recovered by Y2H alone or by any other
single protein interaction assay (Braun et al, 2009; Venkatesan
et al, 2009). Second, Y2H detects binary protein interactions.
A positive Y2H readout does not necessarily warrant proper
protein complex assembly in vivo. In oligomer assembly,
multiple interaction surfaces of the monomer may be
utilized. Mutant alleles that disrupt one but not all interaction
surfaces may show positive interaction in the Y2H analysis,
but may still affect proper oligomerization. Third, Y2H is
not quantitative. Subtle alterations in the affinity of protein–
protein interactions, which are undetectable by Y2H, may
confer phenotypic changes. Finally, disease mutations may
affect protein functions by altering biochemical activities or
protein–DNA or protein–RNA interactions.

Disease-associated alleles may also gain new interactions,
which is another important potential mechanism for patho-
genicity. Gain-of-interaction alleles may be discovered by
screening for new interactions specific for an individual
mutant. Although we can assay only known edges at any
given moment, as more physical and biochemical interactions
become identified with time, deeper edgetic profiling will
become possible. The pilot step taken here will reach its full
potential when applied at genome or proteome scale, with the
results integrated into extensive molecular networks.

Materials and methods

Database annotation

The lists of genes and associated phenotypes were downloaded from
HGMD website (Stenson et al, 2003) (June 2006). The corresponding
gene IDs were retrieved from Entrez Gene (Maglott et al, 2005) (June
2006). By manual annotation we linked phenotypes associated with
each mutation, as annotated in HGMD, to the corresponding disease in
the OMIM database (Hamosh et al, 2005). The resulting list contains
2269 gene-to-OMIM disease ID entries associated with 48 774 distinct
mutations. We carried out all analyses on the resulting gene–OMIM
disease associations. We obtained the inheritance information for the
corresponding disease available in OMIM and separated mutations
associated with autosomal dominant or autosomal recessive inheri-
tance. A total of 1777 gene-to-OMIM disease entries, which involve
1281 genes, 1466 OMIM disease IDs and 35154 mutations, are
associated with either autosomal dominant or autosomal recessive
inheritance.

Fraction of ‘in-frame’ mutations

We grouped missense and small in-frame insertions, deletions and
indels (types of mutations as defined in HGMD) as ‘in-frame’ muta-
tions, whereas nonsense, splicing and small out-of-frame frame
insertions, deletions and indels we grouped as ‘truncating’ mutations.
We calculated the fraction of ‘in-frame’ mutations as the number of

‘in-frame’ mutations divided by the total number of mutations in
each gene for each mode of inheritance (Figure 2C and D and
Supplementary Figures S1 and S8) or for each disease (Figure 5B).
To minimize the possibility of any existing trend being obscured by
genes with few mutations, we limited our analysis to genes that have
five or more mutations associated with each inheritance (Figure 2C
and D and Supplementary Figures S1 and S8) or each disease (Figure 5B).

Essential human genes were estimated from the orthologs of mouse
(Goh et al, 2007), fly, worm and yeast essential genes. Fly essential
genes were extracted from Flybase (Wilson et al, 2008b; phenotype
class: ‘lethal’), yeast essential genes from SGD (Ball et al, 2000;
phenotype: ‘inviable’), and worm essential genes from RNAiDB
(Gunsalus et al, 2004; phenotypes: ‘lethal’, ‘embryonic lethal’, ‘larval
lethal’ and ‘adult lethal’).

Profiling interaction defects of mutant proteins

Disease mutant clones were generated by PCR mutagenesis essentially
as described previously (Suzuki et al, 2005). Forward and reverse
internal primers used are listed (Supplementary Table 4). All sequence-
confirmed Entry clones of mutant alleles were transferred individually by
Gateway recombinational cloning into both pDB-dest and pAD-dest-CYH
destination vectors, generating DB–ORF allele and AD–ORF allele
fusions (Rual et al, 2005). To test against wild-type interactors, the DB–
ORF and AD–ORF clones for CBS, HGD, ACTG1, CDK4 and PRKAR1A
mutant proteins were transformed into MATa MaV203 or MATa
MaV103 yeast strains, respectively. Each interaction pair was tested for
growth on SC-Hisþ 3AT (synthetic medium without leucine, trypto-
phan and histidine, containing 20 mM 3-amino-1,2,4-triazole) plates to
confirm GAL1::HIS3 transcriptional activity, on yeast extract–peptone–
dextrose (YPD) medium to determine GAL1::lacZ transcriptional
activity using a -galactosidase filter assay, and on SC-Ura plates
(synthetic medium without leucine, tryptophan and uracil) to
determine SPAL10::URA3 transcriptional activity. Scoring of Y2H
reporters was done by comparing to a set of Y2H control strains that
contain plasmids expressing pairs of proteins with a spectrum of
interaction strengths (Supplementary Figure S9). Activation of at least
two of the three reporter genes was taken as a positive interaction.
Interaction pairs showing less than two positive reporters are scored as
‘�’. Interaction pairs showing the same number of positive reporters as
the corresponding wild type are scored as ‘þ ’. Interactions that lose
expression of one reporter but still show expression of the other two
reporters are scored as ‘R’.

For immunoblotting, yeast cells with AD–ORF fusions were cultured
overnight at 301C in synthetic medium without tryptophan and then
grown in YPD medium to mid-exponential phase. Cells were collected
and treated with 150 mM of NaOH on ice for 15 min and then lysed in
0.8% SDS buffer (0.024 M Tris–HCl (pH 6.8), 10% glycerol, 0.04%
bromophenol blue and 0.4% 2-mercaptoethanol) for 5 min at
951C. Whole cell lysates were cleared by centrifugation at 14 000 g.
Resulting supernatants were separated on NuPAGE acrylamide
gels (Invitrogen) and electrophoretically transferred onto a PVDF
membrane (Invitrogen). AD fusion proteins were detected by standard
immunoblotting techniques using anti-GAL4 (Activation domain)
antibody produced in rabbit (Sigma) as the primary antibody.

For comparison with experimental data, the following structures
were used: 1JBQ for CBS (Meier et al, 2001), 1EYB and 1EY2 for HGD
(Titus et al, 2000), 2BTF (Schutt et al, 1993), 1HLU (Chik et al, 1996)
and 2OAN (Lassing et al, 2007) for bovine b-actin, 2W9F, 2W9Z,
2W96, 2W99 (Day et al, 2009) for CDK4, and 1G3N (Jeffrey et al, 2000)
for CDK6–CDKN2C complex. Figures of tertiary structures were
generated with PyMol (http://www.pymol.org). The relative solvent-
accessible surface areas (%ASAs) were calculated with PSAIA (Mihel
et al, 2008).

Structural analyses

Protein structures were downloaded from the Protein Data Bank
website (PDB, http://www.rcsb.org/pdb). Removal of redundant
structures was achieved using the PISCES server (Wang and Dunbrack,
2005) with the following criteria: X-ray structures only; no structure
with Ca only; resolution p3 Å; R-factor p0.3; sequence length
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between 40 and 10 000 amino acids; and maximum 90% of sequence
identity between similar PDB structures. This filtering collected 249
non-redundant protein structures corresponding to 236 genes in
HGMD. To repair residual mismatches between the residue numera-
tion in PDB files and in HGMD, PDB sequences were aligned against
their corresponding cDNA sequences in HGMD using CLUSTALW
(Chenna et al, 2003). The relative accessibility of over 91000 residues
in all 249 structures was calculated using PSAIA (Mihel et al, 2008).
With multimers, accessibility was computed for all monomers consid-
ered independently and the multiple values obtained for the same
residue were averaged. Among the 3664 residues affected by missense
mutations, 1590 and 1045 were associated with autosomal recessive
and autosomal dominant diseases, respectively.

Pfam domain assignment

Pfam domains (Pfam-A family only) were computed for cDNA
sequences provided by HGMD, using InterProScan version 4.3
(http://www.ebi.ac.uk/Tools/InterProScan/). Missense, nonsense,
in-frame and out-of-frame small insertions, deletions, and indels were
then mapped onto the cDNA sequences and Pfam domains, generating
a dataset containing 1348 genes with at least one Pfam-A domain and
34 964 associated mutations. Among them, a total of 10 904 ‘truncat-
ing’ mutations are used for the analysis shown in Figure 4D, including
6212 associated with autosomal dominant diseases and 4692
associated with autosomal recessive diseases. Statistics were gener-
ated on the sum of a particular mutation type that either fell into or out
of any Pfam-A domain in its respective protein versus the total fraction
of the Pfam-A domain sequences in the protein sequence.

Transcription factors and structural proteins

Information on genes encoding transcription factors was obtained from
Gene Ontology (Harris et al, 2004) annotations (948 genes with the GO
term of ‘transcription factor activity’) and predictions in the transcrip-
tion factor database (DNA Binding Domain, DBD; Wilson et al, 2008a;
1467 genes). A total of 1697 human transcription factor genes were
retrieved. Among them, 82 genes associated with autosomal dominant
diseases that have at least one mutation in HGMD were used for Pfam
analysis (Figure 4D), and 56 genes with five mutations or more were used
for analysis of ‘in-frame’ mutations (Figure 2D). Structural protein coding
genes were retrieved from Gene Ontology annotations of ‘cytoskeleton’
(992 genes). Among them, 72 genes with at least one mutation in HGMD
were used for Pfam analysis (Figure 4D), and 47 genes with five mutations
or more were used for analysis of ‘in-frame’ mutations (Figure 2D). DBD
and Gene Ontology data were downloaded in March 2008.

Statistical analysis

Error bars represent the s.e.m. values. Significance of the observed
difference in the distributions of ‘in-frame’ versus ‘truncating’
mutations in autosomal dominant and autosomal recessive disease,
the greater proportions of ‘in-frame’ mutations in structural proteins
than in transcription factors, as well as the greater accessibility of
residues mutated in autosomal dominant versus autosomal recessive
diseases, was evaluated using the non-parametric Mann–Whitney
U test. Enrichments of disease alleles in Pfam domains were
determined using odds ratio and the significance thereof using Fisher’s
exact test. A fold enrichment higher than one means Pfam domains
contain more mutations than expected at random, whereas an
enrichment between zero and one means a depletion in mutations.
The differences between proportions of ‘in-frame’ mutations in each
pair of diseases associated with the same gene were assessed by
Fisher’s exact test. All statistics were computed using the R package
(http://www.r-project.org/).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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