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❖ Why single-cell network biology?

• Currently we can link only ~60% of the GWAS SNPs in regulatory elements to an eQTL effect. 

Many of disease-associated SNP may have cell-type-specific effects.

• Independent genetic risk factors can converge into key regulatory pathways. To understand 

pathway-level effect of genetic variants, we need gene regulatory network (GRN).

• Therefore, a comprehensive understand of disease genetics needs cell-type-specific GRN.

• Furthermore, personalized GRN will facilitate implementing precision medicine in the future.

Integrated network for heterogeneous 

cell-types and population.

Single-cell data for each cell-type

and individual.

Cell-type-specific and personalized 

GRNs

Specifying context

❖ Single-cell transcriptome data for modeling GRN

• Larger numbers of data points (>1000’s cells in general) yield higher statistical power.

• Regulatory relationship can be inferred by cell-to-cell variation within cell-type or single person.

➢ Pros

➢ Cons

• High noise and sparsity (dropout): high false positive rates 

❖ Types of single-cell GRN

• Single-cell Transcription Regulatory Network (scTRN)

• Single-cell Functional Gene Network (scFGN)



❖ Single-cell Transcription Regulatory Network (scTRN) from scRNA-seq data

• Most TRN modeling methods developed for scRNA-seq data requires the cells to be ordered by 

pseudotime in the input data.

• For example, LEAP (Bioinformatics 33:764, 2017) applies Pearson’s correlation over temporal 

window of a fixed size with different time lags.

• Others are SINCERITIES (Bioinformatics 34:258, 2018), SCODE (Bioinformatics 33:2314, 2017)

• Then, network inferences will rely on the quality of pseudotime analysis of scRNA-seq data: 

“robustness issue”.

➢ TRN inference methods using pseudotime ordered cells

• Many TRN inference methods for scRNA-seq are based on those for bulk transcriptome data 

using models based on Boolean logic, correlations, regressions, information theory, and etc.

• Boolean models focus on logical combination of TFs required to transit from one state to 

another in dynamic process, resulting in state-graph for key TFs involved in state changes. 

• However, it does not provide target information and computational demands increase rapidly with 

network size because of high-dimensional parameter spaces. (thus generally used for network 

with <100 genes): “scalability issue” 

➢ TRN inference methods based on Boolean models

• TRN inference from transcriptome data relies on the assumption that regulatory information 

can be extracted from the expression pattern.

✓ We prefer TRN inference methods which are robust and scalable to any single-cell transcriptome 

data: Partial correlation (calculated by R package PPCOR), PIDC, GENIE3 and GRNBoost



➢ Benchmarking TRN inferences from scRNA-seq data Nature Methods (2020) e-published

• Since PIDC, GENIE3, GRNBoost2, and PPCOR do not require pseudotime-ordered cells, they are 

immune to any errors in pseudotime computation.

• MI (mutual information); RF (random forest); BT (boosting); Corr (correlation);

• In recent benchmarking based on scRNA-seq data from human and mouse, the TRN inference 

methods with no requirement for time-ordered cells were all top ranked in terms of accuracy. 

• GENIE3 and PIDC also had better stability across multiple runs, whereas GRNBoost2 was less 

sensitive to the presence of dropouts.

• GENIE3 (RF) and GRNBoost2 (BT) infer directional edges (TF → target), whereas PPCOR (Corr) 

and PIDC (MI) infer unidirectional edges.

• Since GRNBoost2 and GENIE3 have multithreaded implementations now, they are as fast as PIDC.



• The principle underlying correlation networks is that if two genes have highly-correlated 

expression patterns (i.e. they are co-expressed), then they are assumed to participate 

together in a regulatory interaction. 

• It is important to highlight that co-expressed genes are indicative of an interaction but 

this is not a necessary and sufficient condition. Partial correlation is a measure of the 

relationship between two variables while controlling for the effect of other variables.

• In complex system, processes often interdependent. For example, the abundance of clouds 

is often correlated with the amount of aerosol particles in the atmosphere.

• But both are also correlated with wind speed. Wind speed might be a “mediating” or 

“confounding” variable.

• Here we want to test for an association two variables after controlling for the effect of 

one or more potentially confounding variables.

• Correlation coefficient is adjusted for correlations between each variable (A, B) and 

potential confounding variable C. 

❖ Partial Correlation

𝑟𝐴𝐵 − 𝑟𝐴𝐶𝑟𝐵𝐶

1 − 𝑟2𝐴𝐶 1 − 𝑟2𝐵𝐶
rAB.C =

• Null hypothesis: there is no association between the two variables after controlling for effects of 

confounding variable(s).

• Therefore the presence of an edge between A and B indicates that a correlation exists between 

A and B regardless of which other nodes are being conditioned on.



• Venn Diagram explanation

Variance in 

variable A
Variance in 

variable B

Variance in variable C

Variance in variable B 

accounted for by variable A 

after removing effects of 

variable C (confounding 

variable): Partial correlation

• Typically, gene expression profiles from single cell data follow multimodal distribution rather than a 

unimodal continuous shape. Therefore, Pearson correlation coefficient are less suited for single 

cell expression data because this metric measures a linear dependency between two variables.

• Given the non-linear nature of single cell gene expression data, nonparametric methods such as 

the Spearman correlation and Kendall rank correlation coefficients are more appropriate. 

• It also computes a p-value for each correlation.

• Since these values are symmetric, this method yields an undirected regulatory network. 

• We use the sign of the correlation, which is bounded between -1 and 1, to signify whether an 

interaction is inhibitory (negative) or activating (positive).

Variance in variable B 

accounted for by variable A

: Correlation



• PIDC is a method developed for scRNA-seq data that uses multivariate information measures 

to identify potential regulatory relationships between genes. 

• Partial information decomposition (PID) considers the information provided by a set of source 

variables (or genes), S = {X, Y}, about another target variable, Z, partitioned into redundant, 

synergistic, and unique information. Redundant information is the portion of information 

about Z that can be provided by either variable in S alone; the unique information from X (or Y) 

is the portion of information provided only by X (or only Y); and the synergistic information is 

the portion of information that is only provided by knowledge of both X and Y. Thus, the PID 

between the set S and the target variable Z is equal to the sum of the four partial information 

terms.

• The unique information terms can be calculated from the redundant information and the pairwise 

mutual information (MI), via the relationship, I(X; Y) = UniqueZ(Y; X) + Redundancy(Y; X, Z) 

• PID computes the ratio between the unique component and the MI. The sum of this ratio 

over all other genes z is the proportional unique contribution between x and y. The ratio of 

the unique information to the MI tends to be higher between pairs of connected genes.

❖ PIDC (Partial Information Decomposition and Context) Cell Syst. 2017;5(3):251–67. e3

• PIDC outperforms pairwise MI-based 

algorithms.

• The resulting network is undirected

since the proportional unique 

contribution is symmetric.



• GENIE3 is a TRN inference method based on variable selection with ensembles of regression 

trees. In each of the regression problems, the expression pattern of one of the genes (target 

gene) is predicted from the expression patterns of all the other genes (input genes), using 

tree-based ensemble methods Random Forests (RF). 

• The importance of an input gene in the prediction of the target gene expression pattern is 

taken as an indication of a putative regulatory link. 

• Putative regulatory links are then aggregated over all genes to provide a ranking of interactions from 

which the whole network is reconstructed.

• Tree-based ensemble methods doesn't make any assumption about the nature of gene regulation, 

can potentially capture high-order conditional dependencies between expression patterns.

• Importantly, GENIE3 produces directed GRNs, and naturally allows for the presence of feedback 

loops in the network. It is also fast and scalable.

• A network inference algorithm was defined as a procedure that exploits a set of gene expression 

vectors to assign weights to putative regulatory links from any gene i to any gene j, with the 

aim of yielding large values for weights which correspond to actual regulatory interactions.

• Exploiting expression data, the identification of the regulatory genes for a given target gene is 

defined as determining the subset of genes whose expression directly influences or is 

predictive of the expression of the target gene. 

➢ Therefore, here the network inference problem is equivalent to a feature selection problem. 

• Importantly, variable (i.e., gene) importance can be computed from a tree that allows to rank the 

input features according to their relevance for predicting the output. GENIE3 uses a measure which 

at each test node computes the total reduction of the variance of the output variable due to the split. 

❖ GENIE3 (GEne Network Inference with Ensemble of trees) PLoS ONE 5(9): e12776 (2010)



1. For each gene j = 1, … ,p, a learning sample LSj is generated with expression levels of j as output 

values and expression levels of all other genes as input values. 

2. A function fj is learned (with RF) from LSj and a local ranking of all genes except j is computed. 

3. The p local rankings are then aggregated to get a global ranking of all regulatory links.

• The overall importance of one variable is computed by summing the importance values of all tree 

nodes where this variable is used to split. Those attributes that are not selected at all obtain a zero 

value of their importance, and those that are selected close to the root node of the tree typically 

obtain high scores. 

• Attribute importance measures can be easily extended to ensembles, simply by averaging 

importance scores over all trees in the ensemble.

▪ GENIE3 procedure



• Goal: to combine weak models (classifiers or regressions) into a final model that has a better 

generalization performance than the individual models.

▪ Ensemble method

❖ Ensemble Learning

• Ensemble methods use multiple learning algorithms (e.g., decision tree, logistic regression, etc) 

to obtain better predictive performance.

• Two major types of ensemble learning approaches: Bagging and Boosting

❖ Bagging (L. Breiman, 1994)

• Building multiple models (e.g., 

classifiers C1, C2, …, Cm) on the 

same learner using bootstrap 

samples of the original training 

sets (T1, T2, …, Tm) →

Aggregating prediction results 

(e.g., majority voting in 

classification) for the final model



❖ Random Forests

• A popular ensemble learner with bagging approach

• Combining individual trees (weak learners) to build random forests (strong learner)

− Maximum depth of the tree: d

− The number of trees in the forest: k

▪ Steps

▪ Pros and Cons

• Draw a random bootstrap sample of size n (choose n random samples out of total n samples 

with replacement)

• Make weak decision trees from the bootstrap samples with two hyperparameters:

• Split input data using the best feature to 

maximize the information gain.

• Repeat above steps for d features for k trees

• Aggregate the prediction of each tree 

by majority voting (in classification) or

averaging (variable weight scores in 

regression)

• Don't need to prune the random forest in general, since the ensemble model is quite robust to 

the noise from individual decision trees

• The larger the number of trees k, the better the performance of the random forest

• Large computational cost for large k



• GRNBoost is based on the same concept as GENIE3 but using the gradient-boosting machines 

(GBM). Boosting is an ensemble learning strategy. 

• GRNBoost uses stumps (regression trees of depth 1) as the base learner. 

❖ GRNBoost Nature Methods 14:1083 (2017)

❖ GRNBoost2 Bioinformatics 35:2159 (2019)

• GRNBoost2 employs a regularized stochastic variation on GBMs. It equips GBM regressions with 

a heuristic early-stopping regularization strategy using out-of-bag improvement estimates. 

• Each new decision tree is trained in function of a random subset of observations (90%, hence 

stochastic), whereas the remaining (10%, out-of-bag) observations are used to calculate an 

estimate of the loss function improvement entailed by adding that tree to the ensemble. 

• When the average of the last n improvement values drops below 0, the early-stopping criterion is 

met and no more trees are added to the ensemble. 

• Regressions that do not display net improvement early on are aborted and thus prevented from 

causing useless computational workload.



❖ Boosting

• Boosting is different from bagging. In boosting, we consider 

the mistakes of previous predictors and train the new 

predictors on those mistakes and then repeat the process 

till we get a better fit.

❖ AdaBoost (Adaptive Boosting) [Y. Freund & R. Shapire 1995]

• Iteratively reweight your dataset, placing higher weights on the examples you are getting 

wrong.  At each iteration, refit and add the result to ensemble.

Algorithm

1. Start by applying some method to the learning 

data, where each observation is assigned an 

equal weight. 

2. Compute the predicted classifications, and 

assign greater weight to those observations 

that were difficult to classify (where the 

misclassification rate was high), and lower 

weights to those that were easy to classify 

(where the misclassification rate was low). 

3. Then apply the classifier again to the weighted 

data (or with different misclassification costs), 

and continue with the next iteration (application 

of the analysis method for classification to the 

re-weighted data). 



▪ A simple example of visualizing boosting with trees.

Scientific Reports 8:1 (2018)

• Boosting is a framework that iteratively improves any weak 

learning model. In practice however, boosted algorithms 

almost always use decision trees as the base-learner.

• Whereas random forests build an ensemble of deep 

independent trees, Boosting machines build an ensemble of 

shallow and weak successive trees with each tree learning 

and improving on the previous. 

• When combined, these many weak successive 

trees produce a powerful “committee” that are 

often hard to beat with other algorithms.

• Fits consecutive trees where each solves for the 

net loss of the prior trees. Results of new trees 

are applied partially to the entire solution.

• Final model is the linear combination of weak 

models with weighted votes for each of the 

base models. 



❖ Gradient Boosting Machines (GBM) [J. Friedman 1999]

• The basic principle is same for both AdaBoost and Gradient Boost. The differences is how the 

new predictor learns from the old one.

• Adaboost learns the weights of weak predictors during the learning process. It keeps adding 

+ve and -ve weights to predictors about certain data points till we have predictors that can 

combine to give a better result. 

• GBM generates predictors during the learning process. Instead of adding any weights to predictors, 

wrong predicted data points are considered as a new training set and the new predictor tries to fit 

these data points making a new model. It keeps fitting wrongly predicted data points with the 

new predictor till lesser predictions are wrong and then use all predictors together to predict 

output by voting or averaging.

• GBM uses gradient descent algorithm which can 

optimize any differential loss function. Each 

tree in GBM is a successive gradient descent step.

• GBM  = Gradient Descent + Boosting

• In GBM instead of reweighting used in AdaBoost, 

each tree is fit to the negative gradients of the 

previous tree.

• Basic elements of GBM: loss function, weak 

learner, additive model

• Improvement of basic GBM: tree constraints, 

shrinkage, random sampling, penalized learning 

(=regularization)  

http://tvas.me/articles/2019/08/26/Block-

Distributed-Gradient-Boosted-Trees.html



❖ Gradient Descent

http://uc-r.github.io/gbm_regression

• Many algorithms, including decision trees, focus on minimizing the residuals and, therefore, 

emphasize the mean squared error (MSE) loss function. Gradient boosting machines can be 

generalized to loss functions other than MSE.

• Gradient descent is a very generic optimization algorithm capable of finding optimal solutions 

to a wide range of problems. The general idea of gradient descent is to tweak parameters 

iteratively in order to minimize a loss function. 

• Suppose you are a downhill skier racing your friend. A good strategy to beat your friend to the 

bottom is to take the path with the steepest slope. This is exactly what gradient descent does -

it measures the local gradient of the loss function for a given set of parameters and takes steps 

in the direction of the descending gradient. 

• Once the gradient is zero, we have reached the minimum.

• Gradient descent can be performed on any loss function that is differentiable. 

Consequently, this allows GBMs to optimize different loss functions as desired.



• An important parameter in gradient descent is the size of the steps which is determined by 

the learning rate. 

• If the learning rate is too small, then the algorithm will take many iterations to find the minimum. 

On the other hand, if the learning rate is too high, you might jump cross the minimum and end up 

further away than when you started.

• Not all cost (loss) functions are convex (bowl shaped). There may be local minimas, plateaus, 

and other irregular terrain of the loss function that makes finding the global minimum difficult. 

Stochastic gradient descent can help us address this problem by sampling a fraction of the 

training observations (typically without replacement) and growing the next tree using that 

subsample. 

• This makes the algorithm faster but the stochastic nature of random sampling also adds some 

random nature in descending the loss function gradient. Although this randomness does not allow 

the algorithm to find the absolute global minimum, it can actually help the algorithm jump out of 

local minima and off plateaus and get near the global minimum.

http://uc-r.github.io/gbm_regression

[Learning rate comparisons] [Stochastic gradient descent]



• To overcome the high noise and sparsity of scRNA-seq data, SCENIC links cis-regulatory sequences 

to single-cell gene expression. SCENIC  workflow consists of 3 steps:

1. Sets of genes that are coexpressed with TFs are identified using GENIE3 or GRNBoost.

2. To identify putative direct-binding targets, each coexpression module is subjected to cis-regulatory 

motif analysis using RcisTarget. Only modules with significant motif enrichment of the correct 

upstream regulator are retained. → Regulon

3. AUCell scores the activity of each regulon in each cell, thereby yielding a binarized activity 

matrix with reduced dimensionality, which can be useful for downstream analyses. For 

example, clustering based on this matrix identifies cell types and states based on the shared activity 

of a regulatory subnetwork. Since the regulon is scored as a whole, instead of using the expression 

of individual genes, this approach is robust against dropouts.

❖ SCENIC (single-cell regulatory network inference and clustering) Nature Methods 14:1083 (2017)



❖ RcisTarget

• RcisTarget is based on two steps. 

1. Identification of enriched TF-binding motif across the genes of Regulon. For each TF, 

RcisTarget selects DNA motifs that are significantly over-represented in the surroundings of 

the transcription start site (TSS) of the target genes. This is achieved by applying a recovery-

based method on a database that contains genome-wide cross-species rankings for each 

motif. The motifs that are annotated to the corresponding TF and obtain a normalized 

enrichment score (NES) > 3.0 are retained. 

2. Prediction of target genes by enriched motif. (i.e., genes in the target gene set that have 

the enriched motif).

• The final GRN = TF-target by expression patterns ∩ TF-target by enriched motif

• There could be negative-correlated TF modules. However, these modules are generally less 

numerous and showed very low motif enrichment. For this reason, we take only positive-

correlated targets.



❖ AUCell

• AUCell can identify cells with active regulons in single-cell RNA-seq data. 

• AUCell scoring method is based on a recovery analysis where the x-axis is the ranking of all genes 

based on expression level (genes with the same expression value, e.g., '0', are randomly sorted); 

and the y-axis is the number of genes recovered from the input set (regulon genes). 

• AUCell then uses an area under the recovery curve (AUC) to calculate whether a critical subset of 

the input gene set is enriched at the top of the ranking for each cell. 

• The output of this step is a matrix with the AUC score for each regulon (of each TF) in each 

cell. We use either the AUC scores (across regulons) directly as continuous values to cluster 

single cells, or we generate a binary matrix using a cutoff of the AUC score for each regulon. 

• Clustering cells for regulon activity profiles can group cell types, suggesting that network activity

score can complement to expression data in single-cell analysis. 

Regulon by Cell matrix 

of Activity score

Cell groups by 

regulon activity



➢ Benchmarking of Association metrics for FGN with scRNA-seq data

Functional coherence of scRNA-seq

coexpression networks (213 datasets).

• All performed very poor, although measures of 

proportionality between two variables worked best.

Nat. Methods 16:381 (2019)



❖ bigSCale method for scRNA-seq data transformation Genome Research 28:878 (2018)

Genome Biology 20:110 (2019)

• To handle the noise and sparsity of scRNA-seq data, bigSCale method uses large sample sizes 

to estimate an accurate numerical probabilistic model of noise. 

• Preclustering cells into groups sharing highly similar expression profiles, which are next 

treated as biological replicates to allow evaluation of the noise. 

• Preclustering procedure: (1) read/count data normalization (2) log10(X +1) transformation (3) 

gene normalization to avoid severe effect of highly expressed genes on clustering  (4) clustering 

cells with Pearson correlation and hierarchical clustering. 

• Different cutting depths give different numerical models. It finds the deepest possible cut (10-

20% of total tree height in general) in the tree to ensure that only highly similar cells are 

grouped together. → final clusters

• At this stage, the cells within each group are treated as replicates, assuming their changes 

of expression to be solely due to noise and not to biological differences. 

• All within-group pairwise comparisons between cells are enumerated in order to determine 

how rare/common (i.e., assigning a P-value) each combination of expression values is. 

Specifically, if a cluster contains n cells, it produces C(n,2) = n*(n−1)/2 combinations of cells. 

Each of these combinations contain k couples of expression values (Xcell1, Xcell2), where k is 

equal to the total number of genes and Xcell1, Xcell2 is the expression of a gene in the two 

compared cells. 

• The numerical model is robust to the different tree cut. Difference in numerical probabilistic 

models between default 7% cut and forced 4% cut or 20% cut is marginal.   

▪ Step 1: Preclustering and numerical modeling



(A) (Left) Default, unsupervised 

heuristic sets a cut of 7% of the 

total dendrogram depth, which 

results in 52 pre-clusters. (Right) 

The numerical model calculated 

using the 52 pre-clusters. Xc1 

and Xc2 represent the 

expression (in a binned UMIs

grid) of a given gene X in two 

cells c1 and c2 belonging to 

the same pre-cluster. The 

cumulative

distribution plot estimates the 

frequency, hence likelihood, of an 

expression change.

(B-C) The difference between the 

numerical model of 4% cut and 

7% cut (B. Right) or 20% (C. 

Right) is marginal.

Genome Research 28:878 (2018)



• bigSCale assigns a Z-score to each gene, representing the likelihood of an expression change 

between two groups of cells. The numerical model is used to identify differential expression 

(DE) between groups.

• After clustering the cells to the highest feasible granularity, we used bigSCale to run an iterative 

DE analysis between all pairs of clusters. For x clusters, this results in a total of x × (x − 1)/2 

unique comparisons, each yielding a Z-score for each gene that indicates the likelihood of an 

expression change between two clusters.

• Thus, if we started with (10 clusters) × (k genes), we end up with [45 × k] matrix of Z-scores. 

▪ Step 2: Differential expression analysis

• We then compute correlations between genes using Z-scores instead of expression values.

• Therefore, linear correlations in the Z-score space can reflect non-linear correlations in 

the original expression space. Hence, Pearson (or Spearman) correlation coefficient is 

recommended to measure association between genes.

▪ Step 2: Network inference using Z-score 

Genome Biology 20:110 (2019)



Transformed single-cell data allow detection of hidden correlations.

a. Distribution of Pearson correlations ρp in normalized expression data (7697 microglia cells) or 

in the Z-score space. We detect only 24 correlations |ρp| > 0.8 in the first scenario, but almost 

one million |ρp| > 0.8 in the Z-score space.

b. Examples of correlations using either expression values or Z-score-transformed data 

(ρp Pearson, ρc Cosine, ρs Spearman). Due to drop-out events and other artifacts, the positive 

correlation between Mmp25 and Ankrd22 is only exposed using Z-scores. Similarly for the 

negative correlation between Samd9l and Cx3cr1.
Genome Biology 20:110 (2019)



❖ Benchmarking co-functional association using Bayesian statistics

• We use Bayesian statistics to measure Likelihood of being associated.

Posterior Odds (belief after the observed data)

Prior Expectation (Belief before the observed data)

L: linkage between two genes

E: an evidence by given data

If LLS = 0, the likelihood of two gene’s association is no better than random chance



❖ How to make a benchmarking data set from pathway database

• Collect pairs of genes that belong to the same pathway.

• Use pathway annotation DBs (Gene Ontology biological process, KEGG pathway, MetaCyc, …).

• What makes a good pathway annotation DB for network modeling?

- Frequent update

- comprehensive

- Evidence codes

• From pathway annotation to pathway links for network training: for example, a pathway has 4 

member genes (gene A, B, C, D). Then we can make the following training samples by the 

pathway

A – B

A – C

A – D

B – C

B – D 

C – D 



➢ Big scale → FGN (PCC), compare with proportionality score

GSE99254 (~12k T cells fax sorted from NSCLC patients)

• bigSCale transformation → PCC

• Standard preprocessed data → Proportionality



❖ Hypothesis generation using gene/protein networks

1. Network connectivity: Hub genes tend to be functionally more important 

(e.g., essential genes)

2. Network propagation: Genes for the same phenotype (e.g., disease) tend to 

be connected in the interactome. Thus, novel disease genes can be inferred 

by propagated information from neighboring disease genes.

3. Subnetwork analysis: Functional or disease modules can be represented as 

subnetworks of tightly connected genes

(Animal Cells and Systems. 21:1-7, 2017) 



❖ Approaches to network-assisted scRNA-seq data analysis

1. Edge connectivity: regulators tend to connect to dysregulated genes;

2. Subnetwork detection: Highly connected sub-network structures may reflect 

functional modules in which functionally related proteins are highly inter-

connected. 

3. Network dynamics: Networks for different spatiotemporal context should be 

different. Genes for a function or disease would show different network 

connectivity across context-specific networks. For example, we may be able to 

infer association between a gene set and context (e.g., disease and specific 

tissue) by their interactions on a context-specific network. 



Network dynamics

❖ Protein Interaction Network Tissue Search (PINTS) (PLoS Genetics 12:e1006121, 2016)

Measure significance of modularity of disease genes -> Detect subnetwork enriched for disease genes -> 

Measure significance of preferential expression of subnetwork for each spatiotemporal context 

Subnetwork spatiotemporal specificity analysis



A. 72/107 genes are densely connected in a subnetwork. 

B. 107 disease genes for the study are functionally aggregated. 

C. Disease subnetwork preferentially express in several tissues/cell types 

D. Association between the disease subnetwork and fetal brain is robust to the score threshold.  

The results indicate that carefully orchestrated developmental processes are important 

in early brain development and perturbations caused by mutation have adverse effect.


