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A Probabilistic Functional
Network of Yeast Genes
Insuk Lee,1 Shailesh V. Date,1* Alex T. Adai,1.

Edward M. Marcotte1,2-

A conceptual framework for integrating diverse functional genomics data was
developed by reinterpreting experiments to provide numerical likelihoods that
genes are functionally linked. This allows direct comparison and integration of
different classes of data. The resulting probabilistic gene network estimates
the functional coupling between genes. Within this framework, we recon-
structed an extensive, high-quality functional gene network for Saccharomyces
cerevisiae, consisting of 4681 (È81%) of the known yeast genes linked by
È34,000 probabilistic linkages comparable in accuracy to small-scale
interaction assays. The integrated linkages distinguish true from false-positive
interactions in earlier data sets; new interactions emerge from genes’ network
contexts, as shown for genes in chromatin modification and ribosome
biogenesis.

Knowledge of the correct overall structures

of gene networks will be invaluable for

characterizing the complex roles of individ-

ual genes and the interplay between the

many systems in a cell. Deriving gene

networks from heterogeneous functional

genomics data, however, is often difficult,

because experiments such as microarray

analyses of gene expression (1) or systematic

protein interaction mapping measure differ-

ent aspects of gene or protein associations.

Affinity purification of proteins analyzed by

mass spectrometry (2, 3), for instance, mea-

sures the tendency for proteins to be com-

ponents of the same physical complex,

although not necessarily to contact each

other directly. By contrast, yeast two-hybrid

assays may often indicate direct physical

interactions (stable or transient) between

proteins (4–6), whereas synthetic lethal

screens (7) measure the tendency for genes

to compensate for the loss of other genes.

Further, these analyses range considerably in

accuracy (8), and it is not clear a priori

which measurements are correct. In spite of

these differences, these data sets can, in

principle, be computationally integrated, pri-

marily by the reconstruction of network

models of the relations between genes (9–12).

Such network reconstructions have largely

focused on physical protein interactions and

so represent only a subset of biologically

important relations.

We sought to construct a more accurate

and extensive gene network by considering

functional, rather than physical, associations,

realizing that each experiment, whether ge-

netic, biochemical, or computational, adds

evidence linking pairs of genes, with associ-

ated error rates and degree of coverage. In this

framework, gene-gene linkages are prob-

abilistic summaries representing functional

coupling between genes. Only some of the

links represent direct protein-protein interac-

tions; the rest are associations not mediated

by physical contact, such as regulatory, genet-

ic, or metabolic coupling, that, nonetheless,

represent functional constraints satisfied by

the cell during the course of the experi-

ments. Working with probabilistic function-

al linkages allows many diverse classes of

experiments to be integrated into a single,

coherent network (Fig. 1), which enables

the linkages themselves to be more reliably

established.

We first developed a unified scoring

scheme for linkages, based on a Bayesian

statistics approach. Each experiment is eval-

uated for its ability to reconstruct known

gene pathways and systems by measuring the

likelihood that pairs of genes are functional-

ly linked conditioned on the evidence,

calculated as a log likelihood score:

LLS 0 ln
PðLkEÞ=ÈPðLkEÞ

PðLÞ=ÈPðLÞ

� �

where P(LkE) and ÈP(LkE) are the frequen-

cies of linkages (L) observed in the given

experiment (E) between annotated genes

operating in the same pathway and in differ-

ent pathways, respectively, whereas P(L) and

ÈP(L) represent the prior expectations (i.e.,

the total frequency of linkages between all

annotated yeast genes operating in the same

pathway and operating in different pathways,

respectively). Scores greater than zero indi-

cate that the experiment tends to link genes in

the same pathway, with higher scores indicat-

ing more confident linkages.

The log likelihood score can be inter-

preted as being proportional to the accuracy

of the experiments and their ability to inform

us about cellular pathways. Because each

experiment is measured on a common bench-

mark, different experiments_ scores are di-

rectly comparable, even when the natures of

experiments are distinct (e.g., comparing

genetic relations to physical interactions),
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Fig. 1. The method for integrat-
ing functional genomics data.
Functional genomics data sets
are first benchmarked for their
relative accuracies; these are
used as weights in a probabilis-
tic integration of the data. Sev-
eral raw data sets already have
intrinsic scoring schemes, indi-
cated in parentheses (e.g., CC,
correlation coefficients; P, prob-
abilities, and MI, mutual infor-
mation scores). These data are
rescored with LLS, then inte-
grated into an initial network
(IntNet). Additional linkages
from the genes’ network con-
texts (ContextNet) are then in-
tegrated to create the final
network (F ina lNet) , w i th
È34,000 linkages between 4681
genes (ConfidentNet) scoring
higher than the gold standard
(small-scale assays of protein
interactions). Hierarchical clus-
tering of ConfidentNet defined 627 modules of functionally linked genes spanning 3285 genes
(‘‘ModularNet’’), approximating the set of cellular systems in yeast.

mRNA coexpression across
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and can be added to indicate confidence of

combined evidence.

As scoring Bbenchmarks,[ we tested the

method against two primary annotation

references: the Kyoto-based KEGG pathway

database (13) and the experimentally ob-

served yeast protein subcellular locations

determined by genomewide green fluores-

cent protein (GFP)–tagging and microscopy

(14). KEGG scores were used for integrating

linkages, with the other benchmark withheld

as an independent test of linkage accuracy.

Cross-validated benchmarks and benchmarks

based on the Gene Ontology (GO) (15) and

KOG gene annotations (16) provided com-

parable results (17).

Seven large-scale yeast protein interac-

tion experiments, including small-scale pro-

tein interaction assays collected from the

Database of Interacting Proteins (DIP) (18),

high-throughput mass spectrometry (2, 3),

yeast two-hybrid (4–6), and synthetic lethal

assays (7), showed similar rankings of

accuracy across the four benchmark tests

(Fig. 2; fig. S8, A and B). These tests

indicate that small-scale experiments (our

Bgold standard[ for high accuracy linkages)

have been the most accurate of all, whereas

the large-scale experiments vary consider-

ably in quality. Even the least accurate

experiments score better than random link-

ages (for which LLS 0 0), highlighting the

merit of this method: weak evidence from

multiple sources can be combined to provide

strong overall evidence for a linkage.

Functional linkages were first inferred on

the basis of genes_ mRNA coexpression

across each of 12 sets of DNA microarray

experiments (497 microarray experiments in

total), then integrated via a rank-weighted

sum of log likelihood scores (17) to create

the combined set of coexpression-derived

linkages. To construct the initial integrated

network (BIntNet,[ Fig. 1), we combined

eight categories of data, including the physi-

cal and genetic interaction data sets, mRNA

coexpression linkages, functional linkages

from literature mining (17), and computation-

al linkages from two comparative genomics

methods, Rosetta stone (gene-fusion) linkages

(19, 20) and phylogenetic profiles (21).

Integrating functional genomics data also

allowed discovery of additional relations

between genes linked, in turn, to a common

set of genes [BContextNet[ (17, 22–25)];

these linkages were scored and integrated as

above to construct the final gene network

(BFinalNet,[ Fig. 3A). The final network has

È34,000 linkages at an accuracy comparable

to the gold standard small-scale interaction

assays (Fig. 2), which provides linkages

(BConfidentNet[) for more than 4681 yeast

genes (È81% of the yeast proteome). The

network is reasonably distinct from networks

of physical interacting proteins Ee.g., sharing

only È16% of linkages with (11); see (17)^.
Adding context-inferred linkages in-

creased clustering of genes (fig. S7, C and

D), which produced a highly modular gene

network with well-defined subnetworks. We

expected these gene clusters to reflect gene

systems and modules (26–30). We could

therefore generate a simplified view of the

major trends in the network (Fig. 3B) by

clustering genes of ConfidentNet according

to their connectivities (17). Of the 4681

genes, 3285 (È70.2%) were grouped into

627 clusters, reflecting the high degree of

modularity. Genes_ functions within each

cluster are highly coherent (fig. S12), and

with 2 to 154 genes per cluster (È5 genes

per cluster on average), the clusters effec-

tively capture typical gene pathways and/or

systems. A region of the modular network

centered on the DNA damage response and

repair systems is shown in Fig. 3C. The

network is clearly hierarchical: Individual

clusters represent distinct systems related to

DNA damage response and/or repair; these

clusters are in turn connected to modules of

cell cycle regulatory genes and chromatin

silencing (fig. S13), functionally linked to

the DNA damage response and/or repair

system. EFor cluster descriptions and inter-

active three-dimensional visualizations, see

(17).^
One can infer individual genes_ functions

on the basis of linked neighbors. For exam-

ple, seven uncharacterized genes are impli-

cated in chromatin remodeling (Fig. 3D). All

but 1 of the 18 linkages made by these genes

arise from the comparative genomics analy-

sis or from the network context methods,

which represent examples of the insights that

arise only after data integration. Three of the

uncharacterized proteins are predicted by

sequence homology to have helicase activity,

which is reasonable for a relation to chro-

matin remodeling; four of these proteins

localize to the nucleus, further supporting

their association. After this network_s con-

struction, one gene, VID21, was implicated

in chromatin modification as a component of

the NuA4 histone acetyl transferase.

Percentage of yeast proteome with linkages (%)
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Fig. 2. Benchmarked accuracy and extent of functional genomics data
sets and the integrated networks. A critical point is the comparable
performance of the networks on distinct benchmarks, which assess the
tendencies for linked genes to share (A) KEGG pathway annotations (13)
or (B) protein subcellular locations (14). Each x axis indicates the
percentage of protein-encoding yeast genes provided with linkages by
the plotted data; each y axis indicates relative accuracy, measured as the
agreement of the linked genes’ annotations on that benchmark. The gold

standards of accuracy (red star) for calibrating the benchmarks are small-
scale protein-protein interaction data from DIP (18). Colored markers
indicate experimental linkages; gray markers, computational. The initial
integrated network (lower black line), trained using only the KEGG
benchmark, has measurably higher accuracy than any individual data set
on the subcellular localization benchmark; adding context-inferred
linkages in the final network (upper black line) further improves the size
and accuracy of the network [see (17) for additional benchmarks].
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The function of the RNA helicase PRP43,

previously thought to be involved only in

pre-mRNA splicing and implicated in lariat-

intron release from the spliceosome (31), is

also clarified in the network. PRP43 is linked

most strongly to genes of ribosome biogen-

esis and rRNA processing. The tightest links

are to ERB1, RRB1, NUG1, LHP1, and

PWP1, the first three of which are confirmed

ribosome biogenesis factors. These links

derive only from the coexpression and con-

text methods Ewith a single exception from

(3)^; data integration is therefore critical. The

association of PRP43 with ribosome biogen-

esis has now been experimentally validated

(32): the growth defect conferred by a PRP43

conditional lethal mutation corresponds to a

rapid and major defect in rRNA processing.

These data indicate that rRNA processing is

the essential function of PRP43, and it joins a

growing group of RNA helicases with two or

more distinct functions.

The probabilistic gene network we describe

integrates evidence from diverse sources to

reconstruct an accurate network, by estimating

the functional coupling among yeast genes,

and provides a view of the relations between
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A

Fig. 3. Features of integrated networks. The final network shows
extensive clustering of genes into modules, evident in the ‘‘clumping’’
(A). At an intermediate degree of clustering that maximizes cluster size
and functional coherence (B), 564 (of 627) modules are shown connected
by the 950 strongest intermodule linkages. Module colors and shapes
indicate associated functions, as defined by Munich Information Center
for Protein Sequencing (MIPS) (34), with sizes proportional to the

number of genes, and connections inversely proportional to the fraction
of genes linking the clusters. Portions of the final, confident gene
network are shown for (C) DNA damage response and/or repair, where
modularity gives rise to gene clusters, indicated by similar colors (see
also fig. S13), and (D) chromatin remodeling, with several uncharac-
terized genes (red labels). Networks are visualized with Large Graph
Layout (LGL) (35).
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yeast proteins distinct from their physical

interactions. The application of this strategy

to other organisms, such as to the human

genome, is conceptually straightforward: (i)

assemble benchmarks for measuring the accu-

racy of linkages between human genes based

on properties shared among genes in the same

systems, (ii) assemble gold standard sets of

highly accurate interactions for calibrating the

benchmarks, and (iii) benchmark functional

genomics data for their ability to correctly link

human genes, then integrate the data as

described. New data can be incorporated in a

simple manner Ee.g., see (33)^, serving to

reinforce the correct linkages. Thus, the gene

network will ultimately converge by succes-

sive approximation to the correct structure

simply by continued addition of functional

genomics data in this framework.
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Requirement of JNK2 for Scavenger
Receptor A–Mediated Foam Cell

Formation in Atherogenesis
Romeo Ricci,1,2*. Grzegorz Sumara,1,2. Izabela Sumara,3

Izabela Rozenberg,1 Michael Kurrer,4 Alexander Akhmedov,1

Martin Hersberger,5 Urs Eriksson,7 Franz R. Eberli,1

Burkhard Becher,6 Jan Borén,8 Mian Chen,9 Myron I. Cybulsky,9

Kathryn J. Moore,10 Mason W. Freeman,10 Erwin F. Wagner,11

Christian M. Matter,1- Thomas F. Lüscher1-

In vitro studies suggest a role for c-Jun N-terminal kinases (JNKs) in pro-
atherogenic cellular processes. We show that atherosclerosis-prone ApoEj/j

mice simultaneously lacking JNK2 (ApoEj/j JNK2j/j mice), but not ApoEj/j

JNK1j/j mice, developed less atherosclerosis than do ApoEj/j mice.
Pharmacological inhibition of JNK activity efficiently reduced plaque
formation. Macrophages lacking JNK2 displayed suppressed foam cell
formation caused by defective uptake and degradation of modified lipo-
proteins and showed increased amounts of the modified lipoprotein-binding
and -internalizing scavenger receptor A (SR-A), whose phosphorylation was
markedly decreased. Macrophage-restricted deletion of JNK2 was sufficient to
decrease atherogenesis. Thus, JNK2-dependent phosphorylation of SR-A
promotes uptake of lipids in macrophages, thereby regulating foam cell
formation, a critical step in atherogenesis.

Atherosclerosis is the result of complex

interactions between modified lipoproteins,

monocyte-derived macrophages that become

foam cells, T lymphocytes, and cells from

the vessel wall (1, 2). The c-Jun N-terminal

kinases (JNKs) belong to the mitogen-activated

protein kinase (MAPK) family. Ten JNK

isoforms have been identified in the human

brain, corresponding to alternative spliced

isoforms derived from the JNK1, JNK2, and

JNK3 genes (3). JNK1 and JNK2 are widely

expressed. In contrast, JNK3 has a more

limited pattern of expression that is largely

restricted to brain, heart, and testis. Al-

though mice lacking JNK1 or JNK2 appear

morphologically normal, they are immuno-

compromised because of T-cell defects (4).

Recent studies in murine disease models

defined specific functions for JNK1 and

JNK2. JNK1 regulates insulin resistance and

obesity (5). JNK2 is required for collagen-

induced arthritis (6). In vitro studies have

revealed that JNK proteins act in a variety of

pro-atherogenic cellular processes involving

endothelial cell activation, T-effector cell

differentiation and proliferation, and migration

of vascular smooth muscle cells (VSMCs) (7).

To investigate the role of JNK in athero-

sclerotic plaque formation in vivo, we used

atherosclerosis-prone apolipoprotein E
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