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ABSTRACT 
 
Network "guilt by association" (GBA) is a proven approach for identifying novel disease genes 
based on the observation that similar mutational phenotypes arise from functionally-related 
genes. In principle, this approach could account even for non-additive genetic interactions, which 
underlie the synergistic combinations of mutations often linked to complex diseases. Here, we 
analyze a large-scale, human gene functional interaction network (dubbed HumanNet). We show 
that candidate disease genes can be effectively identified by GBA in cross-validated tests using 
label propagation algorithms related to Google’s PageRank. However, GBA has been shown to 
work poorly in genome wide association studies (GWAS), where many genes are somewhat 
implicated, but few are known with very high certainty. Here, we resolve this by explicitly 
modeling the uncertainty of the associations and incorporating the uncertainty for the seed set 
into the GBA framework. We observe a significant boost in the power to detect validated 
candidate genes for Crohn's disease and type 2 diabetes by comparing our predictions to results 
from follow-up meta-analyses, with incorporation of the network serving to highlight the JAK-
STAT pathway and associated adaptors GRB2/SHC1 in Crohn’s disease, and BACH2 in type 2 
diabetes. Consideration of the network during GWAS thus conveys some of the benefits of 
enrolling more participants in the GWAS study. More generally, we demonstrate that a 
functional network of human genes provides a valuable statistical framework for prioritizing 
candidate disease genes, both for candidate gene-based and GWAS-based studies. 
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INTRODUCTION 
 
Causal genes remain extraordinarily difficult to identify in most genetic diseases, and in 
particular, in highly polygenic disorders, for which current approaches are most limited (Bonetta 
2008), identifying causal genes is a major barrier to progress in understanding these diseases. 
More generally, traditional linkage analyses have mapped causal genes for many diseases, often 
using positional cloning, but these methods are difficult and time-consuming (Altshuler et al. 
2008). However, genome-wide association studies (GWAS) have opened the way to unbiased 
discovery of large numbers of disease genes in a more efficient manner. 
 
A typical GWAS analysis involves comparing case and control individuals at selected single 
nucleotide polymorphisms (SNPs) or, more recently, copy number variants (CNVs). SNPs 
representing common haplotype blocks are measured genome-wide (at approx. 500,000 – 
1,000,000 locations), and the disease-associated genetic markers are identified (reviewed in 
(McCarthy et al. 2008)). The SNPs that show association strong enough to surpass a genome-
wide significance threshold are then analyzed for chromosomal proximity to genes that might 
cause the disease, or otherwise affect its etiology. However, even though the data from GWAS 
support a great number of loci involved in common diseases, it is hard to separate many of the 
causal genes from the background noise of the hundreds of thousands of SNPs in the assay. 
Consequently, GWAS suffer from a lack of statistical strength, requiring large test populations to 
overcome the large multiple hypothesis correction needed in evaluating hundreds of thousands of 
candidate loci. 
 
The lack of sufficient statistical power forces GWAS studies to ignore weaker loci, focus 
primarily only on the strongest genetic effectors, and genotype thousands of individuals (e.g., 
(WTCCC 2007)). Moreover, the combinatorial effects of multiple disease genes are often not 
simply additive but epistatic (Liew and Dzau 2004; Pomp et al. 2004; Hirschhorn and Daly 
2005), further hampering their discovery. Simply considering pairs of interacting loci increases 
the strength of associations required by orders of magnitude so as to be able to overcome the 
multiple testing criteria, requiring tens of thousands of individuals (Visscher 2008). Rarely has 
genetic association to allele triplets (or higher) been examined by these or any other approaches. 
Linear additive models have been successfully built, most notably for 54 alleles useful for 
predicting human height (Gudbjartsson et al. 2008; Lettre et al. 2008; Weedon et al. 2008), one 
of the first quantitative human traits successfully addressed to this degree. Finding these alleles 
nonetheless required genotyping ~63,000 individuals over the course of 3 studies, each 
explaining <4% of the variance in height. Recent analysis of approx. 300,000 SNPs, without 
regard to the significance of their association, demonstrated that a total of 45% of the variance in 
height could potentially be explained, with most effects too small to pass significance tests 
(Yang et al. 2010). 
 
However, the polygenic nature of a disease may also offer potential opportunities to more 
efficiently discover new and relevant genes. In particular, we might expect that the genes 
associated with a disease will often organize into pathways or functional groupings linked to the 
disease formation and progression. Thus, knowing some disease genes in advance, it may 
occasionally be possible to apply guilt-by-association (GBA) in gene networks (reviewed in 
(Ideker and Sharan 2008)). In particular, it is now possible to construct large gene network 
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models, as has been done e.g. for yeast, worms, plants, mice, and humans, summarizing 
thousands of functional associations among genes, as reviewed in (Christensen et al. 2007; Lee et 
al. 2007b; Bonneau 2008; Feist et al. 2009). Gene pairs are coupled in these networks if they are 
inferred to participate in the same biological process (Marcotte et al. 1999) and may have 
corresponding measures of confidence (Troyanskaya et al. 2003; Lee et al. 2004; Rhodes et al. 
2005; Alexeyenko and Sonnhammer 2009; Jensen et al. 2009). GBA in such networks has been 
shown to correctly identify disease and phenotype-linked genes based on their network 
connections to previously known genes (e.g., (Fraser and Plotkin 2007; Lage et al. 2007; 
McGary et al. 2007; Lee et al. 2008; Chen et al. 2009b; Huttenhower et al. 2009; Linghu et al. 
2009; Lee et al. 2010a)), based on the observation that genes involved in a common biological 
process often tend be associated with similar mutational phenotypes, as seen e.g. in (Fraser and 
Plotkin 2007; Hart et al. 2007; Lage et al. 2007; Lee et al. 2008). 
 
In principle, the GWAS-based association of genetic loci with a disease and the functional 
association of genes into pathways represent independent sets of observations that can be 
logically combined to improve identification of relevant disease genes. For example, networks 
have been applied to search for interacting loci in human GWAS data (Emily et al. 2009; Rossin 
et al. 2011) and in yeast (Hannum et al. 2009), to identify GWAS- and cancer genome-enriched 
pathways (Baranzini et al. 2009; Wu et al. 2010), and to rank genes in implicated chromosomal 
intervals (Franke et al. 2006; Pico et al. 2009; Wu et al. 2009). Other studies have looked at 
previously studied pathways for a disease, and tried to improve the ranking of the candidate 
genes using this information (e.g. (Chang et al. 2008; Saccone et al. 2008); more reviewed in 
(Wang et al. 2010b)). Here, we have tested and expanded the general validity of the approach of 
using functional networks for prioritizing candidate disease genes. We propose a theoretical 
framework for combining the large-scale, unbiased pathway and association information 
encoded by functional gene networks and GWAS studies respectively, showing improvements in 
performance as judged by data from GWAS meta-analyses.  
 
First, we describe the construction of a functional network for human genes. This network spans 
87% of validated protein coding genes, and provides strong predictive power for a majority of 
currently known genetic diseases. We evaluate six alternate approaches for prioritizing candidate 
disease genes using this network, and demonstrate the strongest overall performance with 
algorithms related to Google’s PageRank. We then show that this network, in conjunction with 
genome-wide association data for Type 2 diabetes and Crohn’s disease, boosts the identification 
of disease-associated genes that were discovered in later meta-analyses. This work suggests both 
a specific strategy and a general path to future improvements for the interpretation of GWAS 
data. Taken together, our work demonstrates that a high-quality functional network for human 
genes can provide a powerful resource for identifying causal genes in human disease. 
 
 
RESULTS 
HumanNet: an extended functional gene network for H. sapiens 
 
To test the ability of functional networks to improve gene association studies, we first 
constructed a genome-scale functional network for human genes. Diverse distinct lines of 
evidence, spanning human mRNA co-expression, protein-protein interactions, protein complex, 
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and comparative genomics datasets, in combination with similar lines of evidence from orthologs 
in yeast, fly, and worm, were analyzed, using an approach previously developed and validated 
for yeast (Lee et al. 2004; Lee et al. 2007a), C. elegans (Lee et al. 2008; Lee et al. 2010b) and 
Arabidopsis (Lee et al. 2010a). In total, 21 large-scale genomics and proteomics datasets from 
the 4 species (see Methods, Tables S1 and S2) were integrated into a functional gene network 
spanning 476,399 scored functional couplings between 16,243 (87%) of validated human protein 
encoding genes (Figure 1A). 
 
HumanNet predicts cellular loss-of-function phenotypes 
 
To evaluate the predictive power of the new network, we first examined cellular-level 
phenotypes. Many human diseases reflect failures of core cellular machinery, e.g. failures of 
metabolism, DNA repair, replication, etc. For example, hereditary nonpolyposis colorectal 
carcinoma arises from mutations in DNA mismatch repair (Fishel et al. 1993; Miyaki et al. 
1997), Zellweger syndrome arises from mutations in peroxisome biogenesis (Moser et al. 1995), 
and leukoencephalopathy with vanishing white matter arises from mutations in any of the 
subunits of translation initiation factor eIF2B (Leegwater et al. 2001; van der Knaap et al. 2002). 
A network for even a single eukaryotic cell will capture many of these basic processes, and has 
the potential to prove predictive for genes for diverse human diseases. We therefore investigated 
if the human gene network was predictive of cellular-level mutational phenotypes, focusing on 
cell survival and proliferation phenotypes from loss-of-function studies in cell culture. 
 
We first asked if genes essential to cell viability could be accurately identified using the gene 
network. Schlabach and colleagues identified about 600 genes that affect the viability and 
proliferation of normal human mammary epithelial cells (HMEC) by using multiplex short 
hairpin RNA (shRNA) screening (Schlabach et al. 2008). Although assayed largely for 
proliferation defects, these genes are highly likely to be essential for HMEC cell growth, given 
the incompletely penetrant phenotype induced by shRNA knockdown (Chang et al. 2006).  
 
We found that the essential HMEC genes were, indeed, highly connected in HumanNet (Figure 
1B), as assessed by cross-validated receiver operating characteristic (ROC) analysis (see 
Methods). For example, about 18% of all known essential genes, but only 2% of all genes not 
known to be essential, are connected to known essential genes in HumanNet, a nine-fold 
enrichment. From these results we conclude that essential genes can be predicted on the basis of 
their connectivity to other essential genes in HumanNet. 
 
This general level of predictability was also observed for more specific cellular phenotypes. We 
tested if genes known to be required for HIV infection, as measured by large-scale RNAi 
knockdown (Brass et al. 2008), were predictable by guilt-by-association in HumanNet. Indeed, 
they showed a moderate degree of predictivity, at a level significantly higher than random 
chance (Figure 1C). 
 
The essentiality and viral infectivity phenotypes described above are single gene phenotypes, but 
yeast and worm gene networks have also proven generally predictive for bigenic phenotypes, 
such as synthetic genetic interactions (e.g., (Lee et al. 2010b)). We therefore next asked if the 
human gene network could predict genetic interactions, focusing on two large-scale RNAi 
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screens performed in mammalian cell culture. The first screen identified genes modulating 
expression of a core stemness regulator Oct4 in mouse embryonic stem cells (Ding et al. 2009). 
The second found genes acting as synthetic lethal interaction partners with oncogenic KRAS 
mutants expressed in a colorectal cancer cell line, screening for genes whose knockdown in the 
activated KRAS background resulted in cellular lethality (Luo et al. 2009). In both cases, genes 
identified by the screens were well-predicted by guilt-by-association in HumanNet at rates 
significantly higher than random expectation (Figure 1C). The high predictive strength (AUC = 
0.81) for KRAS interactors is particularly notable, as such genes might be useful as cancer cell 
specific drug targets (Luo et al. 2009). More generally, these tests confirm that the human gene 
network is predictive of a variety of cellular level loss-of-function phenotypes, including specific 
bigenic traits. 
 
 
Genes linked to specific mouse mutational phenotypes and human diseases are predictable 
by guilt-by-association in the network 
 
The cellular-level results demonstrate that genes for cell viability and proliferation phenotypes 
can be identified based on network connectivity in HumanNet. A further trend for genes linked 
in the network to share tissue-specific expression patterns (Figure 1D) implies that the network 
could potentially predict more specific organism-level mutational phenotypes as well. This 
notion has previously been explored for human diseases by considering network connections 
among known disease genes, prioritizing the genes most highly connected to the known causal 
genes as being likely new candidate genes for that disease (Fraser and Plotkin 2007; Lage et al. 
2007; McGary et al. 2007; Linghu et al. 2009), as illustrated in Figure 2A. Such approaches 
primarily consider direct network connections to known disease genes, but related work on 
predicting gene function from networks (reviewed in (Sharan et al. 2007; Stolovitzky et al. 
2007)) has shown wide benefits of also appropriately considering indirect network connections 
(e.g., as in (Mostafavi et al. 2008)), and tests have confirmed the utility of these so-called 
network diffusion algorithms for predicting RNAi phenotypes in worms and loss-of-function 
phenotypes in yeast cells (Wang and Marcotte 2010). Here, we implemented a representative set 
of both types of algorithms, collectively termed label propagation algorithms and chosen by their 
successful application in yeast and worm networks (Wang and Marcotte 2010), for inferring 
disease genes based on network connectivity, evaluating them for their overall predictive ability 
using cross-validation and ROC analysis.  
 
Specifically, we considered six methods of network label propagation. The first are two methods 
that consider only direct network neighbors: (1) neighbor counting (Schwikowski et al. 2000), in 
which the genes with the most neighbors already linked to the disease are most highly scored, 
and (2) naïve Bayes label propagation, in which the sum of the HumanNet linkages to implicated 
neighbors is used rather than their count (Lee et al. 2007a), corresponding to the naïve Bayes 
estimate for a gene to participate in the same process as the known disease genes. We further 
considered four methods that “diffuse” disease associations across the network, considering both 
direct and indirect connections, similar to the methods considered in (Chen et al. 2009a). Two of 
these are mathematically related to Google’s PageRank algorithm: (3) the Iterative Ranking 
method, in which a gene’s score is calculated from an initial score and the normalized scores of 
its neighbors, which, when updated over successive iterations, “smear” across the network 
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linkages (Ramakrishnan et al. 2009; Wang and Marcotte 2010), and (4) Gaussian field label 
propagation (Gaussian smoothing, for short), in which the difference between a gene’s initial and 
final scores and the weighted score difference between a gene and its neighbors are 
simultaneously minimized (Mostafavi et al. 2008). Finally, we considered (5) a clustering 
approach, using Markov clustering of genes based on simulation of stochastic flow in the 
network (Enright et al. 1999), followed by ranking of each gene within a cluster for relevance by 
considering the sum of the gene’s edge-weights within the cluster relative to all of its edge-
weights (Wang and Marcotte 2010), and (6) a model based on electrical circuits (Suthram et al. 
2008), in which network edge weights are considered to be analogous to electrical conductance 
and disease implicated proteins are considered as ground nodes; candidate nodes are identified 
by modelling the application of current to the resulting circuit and measuring which nodes have 
the highest modelled current flow. 
 
Figure 2B shows examples of ROC curves associating genes with several human diseases using 
the Iterative Ranking approach, showing high predictability for these cases. In order to 
systematically test if such predictability was common, and in order to judge the relative merits of 
the network diffusion approaches, we next evaluated a more comprehensive set of mouse 
phenotypes and human diseases. 
 
We first evaluated the predictive power of HumanNet for genes associated (via orthology) with 
mouse mutational phenotypes, drawing upon the nearly 4,000 well annotated gene-phenotype 
associations identified in gene knock-out, gene trapping, and chemical mutagenesis experiments, 
and catalogued in the Mouse Genome Database (MGD) database (Eppig et al. 2005). In order to 
minimize the risk of circular predictions, we performed the tests using a version of the network 
lacking human literature-based linkages (i.e., no linkages by HS-CC or HS-LC). For each of the 
six approaches, we measured the network predictability for these mouse phenotypes using cross-
validated ROC curve analysis, plotting the distributions of AUC (area under the ROC curve) 
scores for 3,374 gene sets associated with mouse phenotypes in Figure 2C. HumanNet shows 
broad predictive ability of genes associated with specific mouse phenotypes, and is significantly 
better than expected by chance using each of the six algorithms.  However, the closely related 
Gaussian smoothing and Iterative Ranking approaches perform comparably to each other, and 
significantly better than the other four approaches, indicating that there is a clear benefit to 
considering indirect connections as well as direct network connections. 
 
Unlike mouse phenotypes, annotations for human disease genes are still extremely limited, 
spanning approximately 3,000 gene-disease linkages in human versus nearly 100,000 in mouse 
(McGary et al. 2010). From annotations available at The Mendelian Inheritance in Man (OMIM) 
database, we selected 263 diseases with at least 3 associated genes. We tested the network’s 
ability to associate genes with each of the 263 diseases using cross-validated ROC analysis, 
testing each of the six approaches, just as we did for mouse phenotypes (and again, using the 
version of the network lacking human literature-based linkages in order to avoid any potential 
circularity). We observed strong predictability for the human genetic diseases, with many disease 
gene sets predicted to high accuracy based upon gene-gene associations in the network  (Figure 
2D). Again, the Iterative Ranking and Gaussian smoothing approaches performed similarly well, 
and significantly better than the other four approaches, confirming the general applicability of 
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network label propagation for associating genes with human diseases and organism-level 
phenotypes. 
 
Data from diverse sources is used to predict disease genes 
 
We further investigated how the various data sets derived from high-throughput experiments and 
model organisms contribute to the mouse and human phenotype predictions. We examined 
predictions made by direct network connections using the naïve Bayes analysis and excluding 
the human literature-derived HS-LC and HS-CC datasets as for analysis in Figure 2C and D. 
These contributions are visualized for the 20 most predictable mouse phenotypes and human 
diseases in Figure 3. Notably, datasets from worm and fly were strong contributors to the 
prediction of mouse phenotypes, as were data from human mRNA co-expression patterns 
(Figure 3A). Likewise, diverse datasets from yeast were strong contributors to a variety of well-
predicted human diseases (Figure 3B). This demonstrates that most data sets contribute to the 
predictions, supporting the importance of data integration for effective disease gene 
identification. 
 
Combining evidence from network guilt-by-association and genome-wide association 
studies 
 
Given that network GBA is strongly predictive of human disease genes, a potentially powerful 
application of this approach is to combine the network GBA with the data from GWAS for direct 
discovery of human disease genes from patient and control populations. In order to use the 
information encoded by HumanNet, our method takes a slightly different approach than the SNP 
level tests used in the statistical analysis of GWAS today. Instead of focusing on single SNPs, we 
try to identify which genes and pathways might be involved in the disease. There are a number of 
reasons for this. First, even the SNPs that are identified in the traditional analysis are rarely 
thought to be the causal variants underlying the disease. This is since the polymorphisms 
measured by GWAS have been chosen not for their biological significance, but for being the 
most informative of the surrounding region of the genome. Second, only a very small fraction of 
the genetic heredity of most diseases studied so far can be explained by the SNPs identified by 
GWAS (Park et al. 2010). This might be because a very large number of genes are involved in 
the diseases, or it might be because rarer variants cause a greater fraction of the heredity than 
previously thought (Dickson et al. 2010; Wang et al. 2010a). If it is due to the latter, we need to 
identify the regions of the genome where these rare mutations are located, so our search for such 
variants can be as efficient as possible. Our goal then is to identify genes and pathways of genes 
involved in the disease, not the marker SNPs most strongly correlated with the disease. Third, by 
taking a gene-centric approach, we can use the information encoded by HumanNet to improve 
our predictions. Finally, by working on the level of genes instead of SNPs, the method 
generalizes to future sequencing data, as long as the genetic variation can be associated with 
nearby genes. 
 
If a GWAS finds a highly significant gene, it makes sense to attempt to identify the causal 
mechanism by which this gene influences the disease by looking at which pathways proteins 
encoded by this gene are active in. For example, this strategy leads to β-catenin expression and 
WNT signaling as a likely mechanism by which TCF7L2 influences type 2 diabetes (reviewed in 
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(Jin and Liu 2008)). By performing this type of pathway analysis automatically, it might also be 
possible to uncover genes that would not otherwise easily be found. This is especially true for 
genes which fall just under the threshold of significance for the GWAS study, but which might 
be “rescued” by considering their interactions with the confident genes. Recent evidence for the 
case of human height shows that such minor contributions are common from polymorphisms 
falling below the significance threshold for association but nonetheless contributing to total 
variation (Yang et al. 2010). 
 
Unlike the GBA analyses considered above, for GWAS data, definite seed genes can rarely be 
found, particularly for the case where the only evidence for disease association comes from the 
GWAS itself. In order to make use of the information from the genes that are on the verge of 
being statistically significant we implemented a “soft category assignment” for the GBA, where 
only genes that show a very strong signal are given full weight in the GBA. Notably, the 
performance of guilt-by-association in HumanNet is independent of the number of genes linked 
to the phenotype (Supplemental Figure 1), which means that by varying the parameter that 
assigns weight in the GBA, we can include successively more genes that are increasingly less 
likely to truly be involved in the disease. We chose to base our method on the naïve Bayes GBA 
rather than the Iterative Ranking or Gaussian smoothing methods, since naïve Bayes gave 
superior recall in the highest precision regime (Supplemental Figure 2), and the log odds output 
of the naïve Bayes can be combined with the log odds from the GWAS in a natural way. 
 
We developed the following scoring scheme: Let Si denote the total GBA score for a gene i, and 
denote by pj the probability that some other gene j is involved in the disease. Suppose that j is 
connected in the functional network to i by a link of strength lij . It would then be natural to 
assign a “soft” GBA contribution from gene j to gene i by 
 
ΔSi, j = p j − (1− p j )( )lij, 

 
which gives the total “soft” score Si of gene i as 
 
Si = ΔSi, j

j

∑ = (2p j −1)lij

j

∑ . 

 
This gives very poor results in practice, most likely because the network is only built on positive 
evidence. However, by only keeping positive contributions, we observe good empirical results. 
Our “soft” GBA score is therefore summed only over those j where 2pj-1>0. Note that another 
natural way to take into account the fact that the network is built only on positive evidence 
would be to use pj as a weight instead of 2pj−1. In practice, however, this does not work well 
(data not shown). 
 
If we assume that the data from the GWAS and the data for the network are conditionally 
independent given the set of genes that are involved in the disease, we can again integrate them 
in a naïve Bayes framework. The posterior log odds that gene i is involved in the disease are then 
 

  
lnO i ∈ D DN DGWA( )= 2p j −1( )

j
lij

j

∑ + lnO i ∈ D DGWA( ), 
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where ( )GWADiO D∈ln  is the log odds of association calculated from the GWAS data, 

corresponding to the log Bayes factor for association with the disease plus the prior log odds for 
association. In general, the prior log odds of association can be thought of as a proxy for the 
number of genes believed to be involved in the disease; in practice, we see significant boosts in 
performance over a wide range of values for the prior log odds. 
 
Considering network linkages increases the power of genome-wide association studies 
 
To evaluate whether the genes highlighted by this method actually are genes that are biologically 
relevant to diseases we used ROC analysis to compare how highly the combined GWAS/GBA 
method ranks the top candidates from meta-analyses for type 2 diabetes and Crohn’s disease 
(Barrett et al. 2008; Zeggini et al. 2008), versus how highly those same genes are ranked by the 
Wellcome Trust study by itself  (WTCCC 2007). These meta-analyses contain the Wellcome 
Trust data used for the predictions, but also incorporate data from a number of similar size 
studies, and have higher statistical power. For both type 2 diabetes and Crohn’s, the Wellcome 
Trust study considered about 2,000 cases and 3,000 controls. For Crohn’s, the meta-analysis 
considered 3,230 cases and 4,829 controls; for diabetes, 4,549 cases and 5,579 controls. To 
confirm that it really is the incorporation of the information encoded by the network that 
improves our predictions, we also compared these results with 200 randomly shuffled networks. 
As shown in Figures 4A and 5A, the combined GWAS/GBA method clearly improves the 
ranking of the genes for both diseases, and does so over a wide range of parameter settings for 
the prior parameter. 
 
Genes boosted in Crohn’s 
 
Prior to the Wellcome Trust study, strong association signals for Crohn's disease had been 
observed in NOD2, IL23R, ATG16L1, ZNF365, and in 5q31 and the gene desert 5p13.1. 
Furthermore, the Wellcome Trust study identified four more strong associations that were 
replicated in follow up studies. These were IRGM; a locus on chromosome 3 containing BSN, 
MST1, MST1R, TRAIP and some other genes; NKX2-3, and finally, PTPN2. Moderate 
association was also seen in the regions 1q24, 5q23, 6p22, 6p21, 6q23, 7q36, 10p15, and 19q13, 
which contain a number of plausible candidate genes, such as STAT3 and TNFAIP3. 
 
Using the evaluation method described above, we saw a distinct increase in the top portion of the 
ROC curve for a wide range of values for the prior parameter centered at -1.7 (Figure 4A). 
Using -1.7 as our value for the prior parameter, we then surveyed the gene groups that had strong 
network support. Interestingly, many of the gene clusters that emerged in this analysis showed 
strong connections with TNF signaling, which suggests multiple points of failure for the TNF 
pathway in Crohn’s disease. We note that one of the most successful drugs against Crohn's 
disease is the TNF antibody Infliximab. 
 
IL23R, STAT3, IL12RB2 and JAK2 have all been indicated as candidate genes for Crohn's 
disease, probably affecting the disease through their involvement in the differentiation of Th17 
cells (Van Limbergen et al. 2009). These are strongly connected in our network, and therefore 
boost each other’s rankings. For our choice of the free prior parameter, STAT3 gets bumped from 
rank 17 to 8, and JAK2 from rank 3139 to 38. Many of these are functionally connected in our 
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network to both the gene coding for adaptor protein GRB2 (rank 99 to 7) and to its interaction 
partner SHC1 (6125 to 17). GRB2 and SHC1 are also involved in gastric ulcer healing (Pai et al. 
1999). GRB2 and SHC1 are furthermore supported by their functional interactions with PTPN2 
and MST1, which probably affect Crohn's disease via their roles in the orchestration of the 
secondary immune response (Van Limbergen et al. 2009). Lastly, GRB2 is a binding partner to 
TNFRISF1A, TNF receptor type I which can mediate a majority of TNF-dependent activities 
(Hildt and Oess 1999). All of this taken together indicates that GRB2-SHC1 warrants further 
study as disease candidate genes for Crohn’s disease. 
 
The cluster containing CYLD, TRAIP, and TRAF1 could also show a mechanism of action for 
Crohn's disease candidate genes. CYLD is located next to NOD2 on chromosome 16. However, 
Cyld-/- knockout mice have an irritable bowel disorder phenotype (Reiley et al. 2007), and 
CYLD has been shown to interact with TRAIP (TRAF interacting protein) by yeast two hybrid 
screens (Regamey et al. 2003). TRAIP is located in the 3p21 locus, which contains multiple 
independent signals for association with Crohn's disease (Beckly et al. 2008). Both of these 
genes are connected in HumanNet to TRAF1, TNF receptor-associated factor 1, which is 
involved in TNF signaling and NF-kappaB signaling. 
 
We also see encouraging support of already known loci ⎯ TNFRSF6B and TNFSF15 are both 
known to be involved in Crohn's disease, and they are connected in HumanNet. 
 
Another interesting gene association is given by ATG16L1 and CAPN9, which boost each other. 
ATG16L1 is involved in autophagy, and has been implicated in multiple GWAS. CAPN9 is a 
stomach specific calpain, and mouse Capn9-/- knockouts are sensitive to gastric mucosal injury 
induced by ethanol administration (Hata et al. 2010). This, together with the connection to 
ATG16L1, indicates that this is another plausible candidate gene for Crohn’s disease. 
 
Genes boosted in type 2 diabetes 
 
Before the Wellcome Trust study, PPARG, KCNJ11 and TCF7L2 had all been identified as 
genes involved in type 2 diabetes through genome wide association studies and replicated in 
follow up studies (reviewed in (Bonnefond et al. 2010)). The strongest candidate gene for type 2 
diabetes, TCF7L2, was also the strongest signal seen in the Wellcome trust study, although the 
others were not so strong. However, the exact mechanism by which TCF7L2 acts was not 
entirely clear. In our analysis (Figure 5), we find it directly connected to the β-catenin/WNT 
signaling pathway by its functional connection to CTNNB1, as well as to BACH2, a gene that 
has been repeatedly implicated in type 1 diabetes (e.g., (Cooper et al. 2008; Madu et al. 2009)), 
but which has not yet been linked to type 2 diabetes. BACH2 is among the genes most strongly 
boosted by network linkages, deriving additional signal from CREB5 and PARD3B, which both 
score highly in the GWAS data. PARD6G, PARD3B and CDC42 are also emphasized by the 
method. Notably, these genes form a complex with PRKCZ (Koh et al. 2008), a variant of which 
correlates with type 2 diabetes in Han Chinese (Qin et al. 2008). EBF1, a known regulator of 
adipocyte differentiation (Akerblad et al. 2005) is also strongly boosted by the network, 
supporting a possible role in type 2 diabetes. 
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Thus, for both Crohn’s disease and type 2 diabetes, the combined GWAS/GBA approach both 
boosts genes that have support in other populations and that have been replicated in later meta-
analyses, and highlights new connections between functionally connected genes among the genes 
that show moderate association to the disease. 
 
 
DISCUSSION 
A new functional gene network for human genes 
 
In order to test the general ability of a gene network to prioritize disease genes, particularly in 
conjunction with GWAS studies, we constructed a genome-scale functional network of human 
genes, incorporating diverse expression, protein interaction, genetic interaction, sequence, 
literature, and comparative genomics data, including both data collected directly from human 
genes as well as that from orthologous genes of yeast, worm, and fly. The resulting HumanNet 
gene network can be accessed through a web interface (http://www.functionalnet.org/humannet). 
Using this interface, researchers can easily search the network using a set of ‘seed’ genes of 
interest. The interface returns a list of genes ranked according to their connections to the seed 
genes, together with the evidence used to identify each coupling. The interactions and evidence 
can be downloaded, and a network visualization tool has been incorporated. All linkages can also 
be downloaded for independent analysis. 
 
Functional networks provide a general strategy for prioritizing disease genes 
 
We demonstrate here that connectivity of human genes in an integrated functional network is a 
strong predictor of disease genes, both for cellular phenotypes and for diseases at the level of the 
whole organism. This predictability is strong even when considering only direct network 
connections, as shown both here and by related previous work (e.g., (Fraser and Plotkin 2007; 
Lage et al. 2007; McGary et al. 2007; Linghu et al. 2009)). We further show that algorithms 
developed originally for predicting gene function using gene networks also perform well at 
prioritizing candidate disease genes. Importantly, the consideration of indirect connections in 
diffusion algorithms, such as Iterative Ranking (Ramakrishnan et al. 2009) and Gaussian 
smoothing (Mostafavi et al. 2008)), greatly improves the correct identification of disease genes. 
Thus, knowing a few genes implicated in a disease, the networks offer a strong tool for 
prioritizing additional likely candidate genes. 
 
One primary limitation of this approach is that genes must already be affiliated with the disease 
in order to predict new candidates. Typically, these seed genes would come from prior studies. 
However, we demonstrate that the approach is still valuable when used in combination with 
GWAS data, where no genes are definitively associated with the disease. 
 
Recent work also demonstrates that functional networks in worm and yeast can successfully 
predict genetic modifiers of genes (Lee et al. 2010b) using the same network guilt-by-association 
approach. The effectiveness of this strategy in yeast and worms strongly supports using a human 
gene network in same manner to predict genes of synthetic or epistatic phenotypes. While 
relatively few such genetic interactions are known currently among human genes (Flint and 
Mackay 2009), as compared to the cases for yeast (e.g., (Tong et al. 2001; Tong et al. 2004; 
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Davierwala et al. 2005; Costanzo et al. 2010)) or worm (Lehner et al. 2006; Byrne et al. 2007), 
functional gene networks offer a potential directed strategy for expanding current sets of human 
genetic interactions by prioritizing the tested interactions using gene networks, and our 
preliminary results demonstrating prediction of KRAS and OCT4 modifiers (Figure 1C) support 
such an approach. 
 
Tissue specificity profiles are shared by linked genes 
 
One important characteristic of HumanNet is the tendency for linked genes to share specificity of 
expression in distinct tissues (Figure 1D). The observation of tissue-specificity embedded in 
networks is consistent with our expectation for co-localization of proteins in the same functional 
modules (e.g., protein complexes and pathways) in specific cell types. However, this is 
nonetheless notable, since many of the raw datasets for network construction were not 
themselves tissue specific. For example, yeast-two-hybrid (Y2H) interactions are tested not in 
human cells but in yeast cells, and in fact, linkages derived only from Y2H do not show high 
tissue specificity (data not shown). Similarly, the phylogenetic profiling and gene neighbor 
comparative genomics approaches are strictly based on analysis of genome sequences and make 
no reference to tissue expression, nor do, for example, linkages inferred by homology from yeast. 
This trend for linked proteins in a genome-wide functional gene network to share tissue 
specificity has also been previously observed for worm and Arabidopsis gene networks (Lee et 
al. 2008; Lee et al. 2010a), and thus seems to be a result of the training process and integration of 
multiple data types correctly capturing the sorts of functional relationships reflected by the tissue 
specificity. A practical consequence is that a single genome-wide network of genes is 
nonetheless able to successfully implicate genes in tissue- and cell-type specific disorders, as, for 
example, the case of liver cirrhosis genes, which are well predicted (AUC = 0.88; Figure 2B). 
 
Network-aided association studies: A general strategy for prioritizing genome-wide 
associations in human disease 
 
The success of our approach suggests that analysis of GWAS datasets using gene networks offers 
a useful strategy for identifying both directly causal genes and even potential modifier loci in 
human disease, and since neither the pathway information encoded by the network nor the 
disease association likelihoods that come out of the GWAS are make any prior assumptions 
about the disease studied, this strategy is free from the study design bias that is inherent in 
candidate gene or candidate pathway analyses. The altered prioritization offered by the network-
based association approach has the effect of shifting attention for follow-up studies to those 
genes (not SNPs) which are both best supported independently and most likely to impinge upon 
the process(es) that are themselves best supported by the GWAS data, as determined from the 
current state of biological knowledge that has been objectively reconstructed and summarized in 
the gene network. Since this technique is gene focused and not SNP focused, it can be used with 
any future sequencing technology as long as the genetic variations can be associated with genes. 
In our analyses of Crohn’s disease and type 2 diabetes, the network boosted identification of 
correct associations by about 10% (measured in area under the first 5% of the ROC curve), 
which translated in practice to 1 to 2 genes more for these cases, a statistically significant but not 
large effect. However, the organization of the associated genes into processes offered a large 
practical benefit, such as focusing attention to BACH2, CTNNB1 and EBF1, which were not 
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well-supported by the type 2 diabetes GWAS but which were prominent network connectors 
between the well-supported genes. Furthermore, this boost is an effect of using the full network; 
individual sources of data do not provide nearly the same coverage and accuracy as the 
integrated network, and the kinds of data that is informative varies for the two different diseases 
studied (data not shown). 
 
A second overall strategy also presents itself for integrating GBA and GWAS datasets, that of a 
candidate gene-based approach: It seems quite feasible to use GBA to known causal genes in 
order to select additional candidates, then to evaluate those candidate genes in a directed fashion, 
either by interrogating the GWAS data for associations involving these loci, or by directed 
sequencing of the candidate genes in patient populations. By focusing only on those genes 
ranked highly by GBA, the multiple testing explosion of typical GWAS is eased considerably, 
allowing for smaller patient samples to be tested and easier statistical significance thresholds to 
meet.  
 
Concluding remarks 
 
In summary, the approach outlined here provides a general method for prioritizing human 
disease genes, both for the case where seed genes associated with the disease are known already, 
and for the case where no such seed genes are known, but GWAS data for the disease is 
available. Our results suggest that the network will be useful for a considerable fraction of 
human diseases with genetic components, and thus provides a general resource for diverse 
genetic diseases. 
 
 
METHODS 
Construction of HumanNet 
 
This study is based on 18,714 human Entrez genes with validated coding proteins (downloaded 
from NCBI; March 2007). Gene functional associations were trained using a reference set of 
gene pairs sharing Gene Ontology (GO) biological process annotations (downloaded from NCBI; 
March 2007). We used only annotations supported by experimental evidence: IDA (inferred 
from direct assay); IMP (inferred from mutant phenotype); IPI (inferred from protein 
interaction); IGI (inferred from genetic interaction); and TAS (traceable author statement). To 
minimize training bias, we excluded highly overrepresented annotations: (1) “signal 
transduction” (GO:0007165) (this term alone would otherwise account for 38% of total positive 
reference gene pairs); (2) three additional phosphorylation terms that have highly diverse 
biological roles, “protein amino acid phosphorylation” (GO:0006468), “protein amino acid 
autophosphorylation” (GO:0046777), and “protein amino acid dephosphorylation” 
(GO:0006470); and (3) all terms at the first and second levels of the GO hierarchy (assuming the 
term “biological process” is level zero). The resulting dataset of 270,704 reference gene pairs 
covers 5,369 (29%) human genes. 
 
Functional associations were learned (as described in detail in the Supplemental Methods) in a 
supervised training framework using the log likelihood scoring (LLS) scheme of (Lee et al. 
2008; Lee et al. 2010a), monitoring overtraining with 0.632 bootstrapping as in (Lee et al. 2008). 
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Gene associations from each separate dataset described below were optimized to maximize 
performance as measured by precision-recall analysis, in accord with the rationales presented in 
(Lee et al. 2008; Lee et al. 2010a). Multiple LLS for each gene pair were integrated using the 
weighted sum method with linearly decaying weights as in (Lee et al. 2008). 
 
Analysis of tissue-specificity of network linkages 
 
The similar tissue specificity of linked gene pairs was measured as the likelihood of co-
occurrence of transcripts of pairs of genes in the same tissues, calculated as 

likelihood score = ⎥
⎦

⎤
⎢
⎣

⎡

¬
¬

)|(/)|(

)|(/)|(
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 , where )|( NCP  and )|( NCP ¬  are probabilities 

that genes connected by the network (N) are co-expressed (C) and not co-expressed )( C¬  in the 
same tissue. )|( RCP  and )|( RCP ¬  represent similar calculations based on randomized 
networks (R), repeating calculations for 100 randomized networks. As a reference for tissue-
specific expression, we collected 5,018 tissue-specific genes and their expression profiles across 
30 different human tissues from the TiGER database of tissue-specific gene expression (Liu et al. 
2008). 
 
Implementation of network guilt-by-association algorithms 
 
The naïve Bayes GBA algorithm was implemented as previously described (Lee et al. 2008). 
Briefly, a gene score consists of the sum of LLSs to seed genes. For neighbor counting, the LLS 
sum is simplified to a count of neighboring seed genes. For Markov clustering, MCL software 
was downloaded from www.micans.org/mcl (van Dongen 2000; Enright et al. 2002). We 
obtained network clusters using the default granularity settings. The final score for a gene 
consists of the sum of the gene’s maximal coverage scores to clusters containing seeds. The 
coverage score is an MCL measure, comprised of the sum of edge weights from a node to a 
cluster, with larger edge weights rewarded. To obtain random scores for a phenotype set, we 
randomly selected from the genome a set of seeds of the same size, and performed naïve Bayes 
GBA as before.  
 
The following methods were implemented in Matlab: GeneMANIA Gaussian field label 
propagation (Gaussian smoothing) was implemented as previously described (Mostafavi et al. 
2008). Briefly, seeds were assigned initial scores of 1, and all others n/N, where n is the number 
of seeds and N is the total number of network genes. We then solved the system y = (I + L)f, 
where y is the set of initial scores, L is the graph Laplacian matrix of the network, and f is the set 
of final scores. The method for Iterative Ranking is derived in detail elsewhere (Ramakrishnan et 
al. 2009). However, rather than iteratively computing the final scores, we solved the system y = 
(I - U)f, where U is the matrix of network edges weighted by the sum of outgoing edges from 
each node.  For the circuit based method, we followed the electrical model proposed previously 
(Suthram et al. 2008). Each edge in the network is treated as the conductance between the 
connecting nodes. The seed nodes are designated as the ground reference, and a current is 
simultaneously applied to all other nodes in the network. Using Kirchoff Laws, we solved for the 
voltage for each node. The final score for a node is the flow, or the node’s total current 
multiplied by its voltage.  
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Integrating the gene network with genome wide association study data 
 
GWAS data came from the Wellcome Trust Case Control Consortium (WTCCC 2007). We 
selected the additive Bayes factor as a measure of association between SNPs and diseases, and 
represent each gene by the strongest association signal within 10 kb from the beginning or end of 
the gene. The same analysis for different cutoffs, varying from 0 to 250 kb, did not significantly 
change the boosting from the network. 
 
We approximated the probability of a gene being involved in a disease by assuming that the 
space of possible hypotheses was limited to the null hypothesis and the additive hypothesis used 
for calculating the Bayes factors, and chose the value for the prior odds by optimizing the area 
under the first 5% of the area under the ROC curve. In general, we observed an improvement for 
prior (log10) odds ranging from roughly -2.5 to -1, corresponding to approximately 60 to 1,900 
associated genes, respectively. Finally, in testing the effect of normalizing for node degree in the 
gene network, we observed a loss of performance, presumably because node degree does carry 
information for associating genes with diseases. 
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FIGURE LEGENDS 
 
Figure 1. Construction and evaluation of a genome-scale human gene network, HumanNet. (A) 
21 diverse functional genomic and proteomic data sets (Table 1) were evaluated for their 
tendencies to link genes in the same biological processes. Pairwise gene linkages derived from 
the individual datasets were then integrated into a composite network of higher accuracy and 
genome coverage than any individual data set. The integrated network (HumanNet) contains 
476,399 functional linkages among 16,243 (86.7%) of the 18,714 genes encoding validated 
human proteins. The plot x axis indicates the log-scale percentage of the 18,714 genes covered 
by functional linkages derived from the indicated datasets (curves); the y axis indicates the 
predictive quality of the datasets, measured as the cumulative log likelihood of linked genes to 
share Gene Ontology (GO) biological process annotations, tested using 0.632 bootstrapping and 
plotted for successive bins of 1,000 linkages each (symbols). Data sets are named as XX-YY, 
where XX indicates species of data origin (CE, C. elegans; DM, D. melanogaster; HS, H. 
sapiens; SC, S. cerevisiae) and YY indicates data type (CC, co-citation; CX, mRNA co-
expression; DC, domain co-occurrence; GN, gene neighbor; GT, genetic interaction; LC, 
literature-curated protein interactions; MS, affinity purification/mass spectrometry; PG, 
phylogenetic profiles; PI, fly protein interactions; TS, tertiary structure; and YH, yeast two-
hybrid). Detailed descriptions are listed in Table S1. (B) Essential genes were highly 
interconnected in HumanNet, and thus predictable from the network, as shown by ROC analysis. 
Genes were ranked by their sum of network edge weights to the known essential genes, 
measuring recovery of known essential genes (true positives) and other genes (false positives) 
using leave-one-out cross-validation. (C) Genes involved in more specific cellular phenotypes—
host factors required for HIV infection (HDF; (Brass et al. 2008)), modulators of Oct4 
expression (Oct4-GI; (Ding et al. 2009)), and synthetic lethal partners of activated KRAS alleles 
(KRAS-SL; (Luo et al. 2009))—were also well predicted by their interconnectivity in 
HumanNet, calculated as for (B). (D) Finally, network-linked gene pairs were substantially more 
likely to show similar tissue specificity in their expression patterns, measured as the likelihood of 
co-occurrence of transcripts of pairs of genes in the same tissues across 30 different human 
tissues from the TiGER database of tissue-specific gene expression and regulation (Liu et al. 
2008). 
 
Figure 2. Network-guided prediction of genes for transgenic mouse phenotypes and human 
diseases. (A) A schematic figure of network-guided prioritization of candidate disease genes. 
Given some known disease genes (black nodes), additional genes can be predicted by their 
(weighted) associations in the network, with more strongly connected genes being prioritized 
more highly (node shading). (B) Known genes associated with several human diseases are well 
predicted by the Iterative Ranking method for propagating disease labels across HumanNet, as 
measured using cross-validated ROC analysis. In this and later GBA analyses, we used leave-
one-out cross-validation for phenotype sets of 3 to 10 genes and 10-fold cross-validation for all 
other sets. The performance can be summarized as the area under the ROC curve (AUC), ranging 
from 0.5 (random) to 1.0 (perfect). (C) Network GBA predictability of genes associated with 
3,374 transgenic mouse phenotypes. Bar-and-whiskers plots summarize the predictive 
performance (measured as cross-validated AUC) for each of six algorithms for using HumanNet 
to prioritize candidate disease genes. The Iterative Ranking and Gaussian smoothing approaches 
outperform the others by a significant margin, and show generally high predictability for more 
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than three-quarters of the phenotypes tested. In bar-and-whiskers plots, the central horizontal line 
in the box indicates the median AUC and the boundaries of the box indicate the first and third 
quartiles of the AUC distribution, whiskers indicate the 10th and 90th percentiles, and plus signs 
indicate individual outliers. The mean AUC is plotted as a dashed blue horizontal line. (D) A 
related analysis of human disease genes, assembled for 268 diseases from the OMIM database, 
shows similarly strong prediction strengths and the same relative ranking of algorithm 
performance. 
 
Figure 3. The predictive power for loss-of-function phenotypes stems from a wide variety of 
data types integrated into HumanNet. Prediction both of (A) genes associated with mouse 
phenotypes and (B) of genes associated with human diseases are supported by diverse lines of 
evidence, including, for example, fly and worm data contributing strongly to mouse phenotypes, 
and yeast data contributing to human diseases.  
 
Figure 4. Consideration of the human gene network boosts recovery of validated Crohn’s 
disease genes from GWAS analysis of 2,000 cases and 3,000 controls. (A) shows the 
performance improvement achieved by network-boosted GWAS relative to GWAS alone 
(Wellcome Trust Baseline, (WTCCC 2007)), measuring performance as the area under a ROC 
curve up to 5% false positive rate (AUC, <5%FPR) for recovering the top 22 Crohn’s disease 
genes identified in a larger meta-analysis of 4,549 cases and 5,579 controls (Barrett et al. 2008). 
For the AUC (<5%FPR) measure of performance, a perfect predictor achieves a score of 0.05, 
while random predictors score near 0.00125. The network boosted approach (colored red line) 
outperforms the GWAS alone (straight dashed blue line) over a wide range of parameter values. 
For comparison we also show the results of network boosting when randomized networks are 
used, plotting the mean (dotted line) and range of performance (2 s.d.) for 1,000 random trials. 
(B) plots the network of candidate genes (rounded rectangles) identified from the combination of 
HumanNet and GWAS data, visualized using Cytoscape (Cline et al. 2007). The node size 
corresponds to the strength of the evidence from the WTCCC data, and the intensity of red color 
indicates how much the gene was boosted by the HumanNet GBA. HumanNet linkages are 
drawn as directed arrows connecting genes, with edge weight scaled by strength of boost 
contributed by the source to the sink. All genes are drawn with positive posterior log-odds when 
the prior log-odds of association are -1.7, except for network singletons, and the 50 highest 
scoring non-singleton genes are shown. Note the strong boost given to GRB2 and SHC1, which 
are known to be involved in healing gastric ulcers (Pai et al. 1999), and to JAK2 and STAT3, 
which were also identified in later meta-analyses (Van Limbergen et al. 2009). 
 
Figure 5. Consideration of the human gene network boosts recovery of validated type 2 diabetes 
genes from GWAS analysis of 2,000 patients and 3,000 controls. (A) and (B) are plotted using 
the same conventions as in Figure 4, analyzing WTCCC GWAS data (WTCCC 2007) for type 2 
diabetes alone and in combination with HumanNet and measuring performance as AUC 
(<5%FPR) for recovering the top 20 genes from a type 2 diabetes meta-analysis of 4,549 cases 
and 5,579 controls (Zeggini et al. 2008). As for Crohn’s disease, consideration of the network 
boosts performance across a wide range of parameter values. Notably, consideration of the 
network strongly implicates the genes CTNNB1 and BACH2 in type 2 diabetes; CTNNB1 is well 
studied in connection with type 2 diabetes and BACH2 has been previously implicated in type 1 
diabetes and celiac disease (e.g., (Cooper et al. 2008; Madu et al. 2009)), but not type 2 diabetes. 
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Table 1. Selected top-ranked Crohn’s disease and type 2 diabetes genes for which network data 
added support to GWAS evidence, measured as an increase in odds (prior =  -1.7 for each). 
 
Crohn's disease 

   

Gene 
name 

New 
rank 

Original 
rank 

Log 
odds 
increase Interaction partners 

NOD2 1 1 0 
 ATG16L1 2 2 0.53 CAPN9 

IL23R 3 3 0.76 STAT3 
CYLD 4 4 0.52 TRAIP 
PTPN2 5 6 0.76 STAT3 
GRB2 7 99 3.63 DAG1, APP, STAT3, DDK1, PPP2R2B 
STAT3    8 17 1.88 IL23R, PTPN2, GRB2 
BSN 9 9 0.61 CAMKV, ERC2 
DAG1 11 21 1.6 TCTA, GRB2 
PPM1K 16 125 2.27 CDK14, CAMKV, CLK3, MAGI2 
SHC1 17 6125 3.98 PTPN2, STAT3, DOK1, GRB2, DAG1, SBNO2, DAG1 
SRC 20 11633 4.38 MAGI2, DAG1, STAT3, GRB2, USP4, PTPN2, PPM1K 
CAPN9 22 18 0.58 ATG16L1 
TRAIP 28 45 0.66 CYLD 
TRAF1 34 327 1.91 BATF, CREM, CYLD, TRAIP, USP7 
JAK2 38 3139 2.95 IL23R, STAT3, GRB2, IL12RB2, PPM1K, MAG12 

     Type 2 diabetes 
   

Gene 
name 

New 
rank 

Original 
rank 

Log 
odds 
increase Interaction partners 

TCF7L2 1 1 0 
 THBS2 2 5 0.36 ISLR 

CDKAL1 3 2 0 
 TSPAN8 4 3 0 
 PARD3B 10 13 0.22 KIF23 

KIF23   14 44 1.05 MELK, FAM49A, DYNC1H1, GTSE1, PARD3B 
FAM49A    16 42 0.9 ANKS1B, KIF23, ANKS1A 
ISLR 17 26 0.49 THBS2, ZNF532 
BACH2    18 200 1.66 TCF7L2, PARD3B, CREB5 
ANKS1A 23 30 0.32 FAM49A 
XYLB 27 34 0.36 ATG7 
MAGI2    29 65 0.67 ALK, CHUK, PRKG1, MELK, DYRK1A 
CDC42 35 191 1.18 PARD38, ATG7 
MELK    38 51 0.46 MAGI2, KIF23 
CTNNB1 76 3099 1.88 ATG7, TCF7L2, LOH12CR1, CHUK, MAGI2  
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