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Abstract
A challenge facing nearly all biologists is to identify the complete set of genes that are important for a process or
disease.This applies to scientists investigating fundamental pathways in model organisms, but also to clinicians trying
to understand human disease. There are many different types of experimental data that can be used to predict the
genes that are important for a process, but these data are normally dispersed across numerous publications and
databases, and are of varying and unknown quality. Integrated functional gene networks aim to gather functional
information from all of these data into a single intuitive graph model that can be used to predict gene functions. In
this approach, the ability of each data set to predict functional associations between genes is first measured using a
standard benchmark, and then the scored predictions by each data set are combined. The resulting integrated
probabilistic gene network can be used by all researchers to predict gene function, with much greater coverage
and accuracy than any individual data set. In this review, we discuss how such integrated gene networks are
constructed, how their predictive power for gene function can be tested, and how experimental biologists can use
these networks to guide their research.We pay particular attention to such networks constructed for Caenorhabditis
elegans, because in this complex multicellular model system functional predictions for genes can be rapidly tested
in vivo using RNAi.The approach is, however, widely applicable to any system, and might soon be a common method
used to dissect the genetics of human complex diseases.
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WHAT ISA FUNCTIONALGENE
NETWORK?
A functional gene network is a network that

connects two genes that share a common function

[1–8]. That is, two genes (network nodes) are

connected (network edge) if they participate in a

common biological process or pathway. The edges in

a functional gene network may, or may not, represent

direct physical interactions between gene products.

A functional gene network is therefore a slightly more

abstracted representation of a biological system than

networks based on direct physical interactions

between gene products such as protein–protein or

protein–DNA interaction networks. Indeed, this is

precisely the point of constructing such a functional

network—it allows many disparate types of data to be

integrated and represented by a single graph model

[9], rather than by the superposition of many

different networks, each representing a different

aspect of the relationship between molecules [10].

In this review, we do not specifically discuss the

various types of biological networks that have been

(and will be) constructed for model organisms. This

topic has been extensively reviewed before [10, 11].

Rather, we aim to discuss the reasoning behind

integrating these diverse data-types into a single
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‘functional’ network, and how such a functional

network can be used to advance research.

The main use of a functional gene network is to

predict novel gene functions and loss-of-function

phenotypes. For example, if gene A is connected to

gene B in a functional network, and we know that

gene B is required for function X, then using a ‘guilt

by association’ argument we can predict that gene A

is also likely to be involved in function X. If gene A

is also connected to genes C, D and E that are also

involved in function X, then gene A is even more

likely to be a component of function X.

One of the most important motivations behind

functional gene networks is that they gather together

many different data-types into a single, and easily

accessible resource. Moreover, by measuring the

accuracy and coverage of each of these data sets using

a common measure of whether two genes participate

in the same pathway or process, integrated networks

allow the utility of each of these data sets to be

directly contrasted and compared. This is useful

both for the bench scientist unsure about the quality

of the data contained in each data set, and also for the

community as a whole because it highlights areas of

data paucity.

A second major advantage of integrated networks

is that they are ‘more than the sum of their parts’

when it comes to predicting gene function or

loss-of-function phenotypes. Many individual data

sets are largely complementary, so by combining data

sets together the resulting integrated network can

cover both more genes and more interactions.

However, the increase in coverage that results from

combining data does not necessarily reduce the

accuracy of networks. If the accuracy of each data set

is measured, and only the high-quality part of each

data set is used in the final network, then the

integrated network can still maintain high accuracy.

Indeed, because of this benchmarking and integra-

tion, the accuracy of an integrated network will

normally be higher than any individual data set.

HOWDOYOU BUILDA
FUNCTIONALGENENETWORK?
Overview
The aim of an integrated gene network is to

combine many different types of biological data

together into a single network of interactions

between genes. The simplest method to do this is

to sum together the interactions between genes

found in multiple different data sets. However,

each of these individual data sets will be of very

different qualities, so this simple summation normally

results in a network that, although seemingly having

high coverage, is of low (or unknown) accuracy [12].

One simple method to avoid the reduction in

accuracy that results from combining many low-

quality data sets is to only consider the ‘overlap’

between data sets as a final higher confidence network

[12–16]. For example, genes A and B may only be

connected in a final network if they interact in more

than one of the constituent data sets. This ‘overlap’

approach does indeed increase the accuracy of the

final network. However, it also reduces the coverage

very dramatically—interactions that are only sup-

ported by one line of evidence may be of very high

confidence but these interactions will always be

excluded from a final network using this approach.

The shortcomings of both the simple summation

approach and the overlap approach have led to the

development of more sophisticated methods for

constructing integrated networks [3, 7, 17–19]. In

these approaches, the individual lines of evidence

are combined in a probabilistic framework. That

is, the accuracy of each individual data set is first

measured using a common benchmark, and then

the evidence from each individual data set is

combined according to the measured accuracy of

each individual data set. The final network is thus a

probabilistic network of functional interactions

between genes, with each interaction associated

with a confidence score.

Data sets that can be used to
construct a gene network
There are many different types of experimental data

that can be used to infer functional association

between genes. These include (references are given

for Saccharomyces cerevisiae and Caenorhabditis elegans
data sets only) genome-scale protein–protein inter-

actions from various experimental detection methods

such as yeast two-hybrid [20–23] and affinity

purification followed by mass spectrometry analysis

[24–26]; the tendency of mutations in genes that act

in the same process to produce non-additive

phenotypes [27–33]; and the tendency of these

genes to be co-expressed across conditions [34, 35].

We also can infer many functional gene associations

by computational analysis of genome context, for

example, the co-inheritance pattern of genes across

genomes (phylogenetic profiling) [36–38] and the
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proximal chromosomal location of bacterial ortho-

logues (gene neighbouring that measures the like-

lihood of bacterial orthologues being in the same

operon) [34, 39, 40]. Importantly, a network can also

use interactions transferred from many different

species as interactions between orthologous genes

[41]. We provide a non-exhaustive list of these data

types in Table 1, and as new experimental data sets

and computational approaches are developed the

number of data sets that can be used will increase.

For example, signalling [42] and regulatory [43, 44]

networks will also likely provide very useful data that

can be integrated in future network releases.

Benchmarking data sets
One very important factor that affects the quality of a

constructed gene network is the choice of bench-

marking interactions, often referred to as ‘gold-

standard positive’ (GSP) interactions—i.e. those that

researchers consider very likely to be true, and ‘gold-

standard negative’ (GSN) interactions—i.e. those

interactions that researchers consider most likely not

to occur. The benchmarking interactions must not

be explicitly included into the network.

To build a set of GSP interactions requires an

accurate measure of gene function. This in itself is

not an easy task, both because most genes have many

functions and also because the definition of gene

function can be interpreted on many different levels.

Pragmatically, to date, researchers have tended to use

the Gene Ontology (GO) database of gene function

annotations [45]. This database represents gene

functions as a hierarchy of annotations, and at least

those annotations derived from the literature should

be of sufficiently high quality. Empirically, we have

found that using the ‘biological process’ annotations

from GO provides a useful measure of whether two

genes participate in a common biological pathway or

system. However, improvements in the coverage and

accuracy of functional annotation databases should

lead to significant improvements in the standard of

integrated gene networks. GSP interactions can be

constructed by pairing genes sharing at least one GO

biological process term. GSN interactions can be

generated by pairing genes that are both annotated

with a GO biological process term, but do not share

a term.

Having built a set of GSP and GSN interactions,

it is next necessary to use these to measure the quality

of each data set that is being considered for inclusion

into an integrated gene network. One measure that

has proved popular for this purpose is a likelihood

ratio [3, 17]. These ratios, similar to the odds ratios

used in human disease gene mapping, measure how

well a data set connects genes that are known to

share a function (interactions in the GSP set)

compared to those that do not share a function

(interactions in the gold-standard negative set). This

measure is then normalized by the prior expectation

based on picking random genes.

Integrating data sets
The advantage of using likelihood scores or similar

measures of the accuracy of each data set is that it

allows the different types of evidence to be inte-

grated together weighted according to the con-

fidence that each data set is making correct

predictions (Figure 1). A popular method for

Table 1: Some data types that can be used to predict functional linkages between genes

Data type Description

Protein interactions Gene products that physically interact are likely to share a common function.
Protein complexes Components of a protein complex are likely to share a common function.
Genetic interactions If mutations in two genes result in synthetic phenotypic consequences, then these two genes are likely

to share a common function.
Gene co-expression Genes that are co-expressed across conditions are likely to share a common function.
Co-regulation Genes regulated by the same upstream regulators are likely to share a common function.
Gene neighbourhoods Genes whose orthologues are adjacent in bacterial genomes (are likely to be transcribed in the same

operon) are likely to share a common function.
Gene fusions Genes that are fused into a single open reading frame in a different species are likely to functionally

interact.
Co-inheritance of genes across species Genes that are either both present, or are both absent in many genomes are likely to share a common

function.
Co-citation Genes that are described in the same publications are likely to share a common function.
‘Associalogues’ Genes whose orthologues in one species share a function are also likely to share a common function in

a second species of interest.
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integrating likelihood scores is to use a Bayesian

framework [3, 7, 17–19], although other methods

such as decision trees [46] and other machine-

learning approaches may also become more widely

used. If each line of evidence is assumed to be

independent, then the data sets can be combined

together as a simple sum (naı̈ve Bayesian integration).

However, in reality, many different biological data

sets cannot be considered to be truly independent—

for example, many different data sets measure

whether two proteins interact using related experi-

mental or computational methods. Therefore, mod-

ifications have been made to the naı̈ve Bayesian

integration whereby the likelihood scores are not

combined as a simple sum, but each additional

evidence is further penalized to account for any

dependence between data sets (Box 1 and [3]).

Alternatively, more complex, fully connected

Bayesian integrations can be used, which accom-

modate for any correlated evidence sources [17].

Following integration of many different data sets,

each edge in a final network has an associated score

that represents the confidence that the interaction

is true. That is, the final network is probabilistic,

with some interactions of very high confidence

and other interactions with lower confidence.

The final network can be considered a ‘family’ of

networks—by changing the level of confidence you

are prepared to work with, you can use a smaller

network where all the interactions are of very high

confidence, or a large network with interactions of

both high and lower confidence.

HOWDOYOUTESTA
FUNCTIONALGENENETWORK?
Having constructed a gene network, it is important

to test how good it is. The best way to do this is

to use many new, independent experiments

(see subsequently). However, in reality, it is not

realistic to perform new experiments testing predic-

tions for every pathway in an organism, so an

alternative strategy is to use existing experimental

data. The experimental data set used for testing a

network should be large, diverse (covering many

different systems in the organism) and it should, of

course, not have been used either in the construction

of the network or for its benchmarking. One good

source of such data is reverse genetic data. In both

yeast and C. elegans, genome-wide reverse genetic

screens have now been performed for very many

diverse processes (these screens are collated in [47]

and [4]). In these screens, the effects of deleting or

inhibiting the expression of nearly all genes have

been assayed for a particular process. Provided that

none of this data was used to construct or benchmark

an integrated network, then the data from these

screens can be used to test the predictive power of a

network for many diverse processes.

The basic test is whether—the genes that affect a

phenotype are more connected in a network to each

other than to random genes? To put it another way,

if we were given a subset of these genes, could we

use the network to predict many of the additional

genes that have been found to affect a process?

One way to test the ability of a network to

correctly predict the genes that are associated with a

process is to plot ‘receiver operating characteristic’

(ROC) curves, as summarized in Figure 2 [4, 6, 47].

In this approach, all genes in the genome are scored

by summing the scores of all their connections to the

seed genes. A gene with many high-confidence

interactions to the seed genes will receive a high

score, and a gene only connected by a single weak

interaction will receive a very low score. Gene with

no direct connection to the seed genes will receive a

score of zero. This score is calculated for all genes

including the seed genes themselves, and all the

Figure 1: Constructing an integrated functional gene
network. An integrated functional network connects
genes by an interaction if the two genes are likely to
share the same function [9]. Each functional or compara-
tive genomic data set is first measured for its ability to
connect genes that are known to share the same func-
tional annotations, for example, using GO annotations
[45]. The interactions predicted by each data set are
then integrated together, but weighted according to
how well each data set performs in the benchmarking
[3]. In the example, data set1performswell and so inter-
actions predictedby this data setreceive high confidence
scores, data set 4 performs very poorly and so interac-
tions predicted by this data set receive low confidence
scores. The final integrated network is therefore prob-
abilistic with each interaction having an attached likeli-
hood score (here dark thick lines represent higher
confidence interactions).
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genes in the genome are then ranked according to

their score. To assess how well the seed genes are

returned in preference to random genes, the

proportion of seed genes recovered as you descend

the list (sensitivity) is plotted against the proportion of

non-seed genes recovered 1-specificity (Figure 2).

In this way, ROC curves can be used to compare the

recovery of ‘true positives’ (y-axis) and ‘false

Box1: Benchmarking and integrating data to construct a functional gene network

Biological data are heterogeneous and differ in quality and predictive power for identifying interacting genes (or genes

sharing a function). To integrate many different data sets we need to evaluate them using a common reference set—

this is called benchmarking the data. After this benchmarking using a common measure, the original data become

standardized and thus can be easily integrated into a single model. How data sets can be best benchmarked and

integrated is a field of active research, and further work in this area should lead to significant improvements in network

coverage and accuracy.

The probability of two genes interacting (or sharing a function) can be conveniently scored with Bayesian statistics

[3, 7, 17–19]. In this statistical framework, we measure how likely two genes are to interact in a set of trusted

interactions (GSP interactions) if they interact in an experimental data set, compared to the random expectation of two

genes interacting in the GSP data set. More formally, log likelihood score (LLS) can be calculated using the following

equation:

LLS ¼ ln
PðLjDÞ=Pð� LjDÞ

PðLÞ=Pð� LÞ

� �
,

where P(LjD) and P(�LjD) are the frequencies of interactions in the GSP data set (L) and in the GSN data set (a set

of gene pairs that do not interact) (�L) for genes that interact in a given experimental data set (D). P(L) and P(�L)
represent the prior random expectations (the total frequencies of positive and negative interactions, respectively).

For data sets in which each gene pair is associated with a continuous data-intrinsic score (e.g. correlation coefficients

from co-expression data, mutual information from comparative genomic data), LLS scores can be calculated for bins

containing equal numbers of rank-ordered gene pairs. These LLS scores and their corresponding data-intrinsic scores

(the mean scores for a bin) can be used to calculate regression models, which are then used to map individual data-

intrinsic scores to LLS scores in a continuous manner.

For integrating LLS scores from different data sets, we can simply take a sum of all LLS assuming complete

independence among data sets. This naı̈ve Bayesian integration is simple but not ideal, because correlation is frequent

among the data sets to be integrated. One alternative data-integration method is to use a weighted sum method that is

a variant of naı̈ve Bayesian integration that takes into account correlations among the data sets. For example, the

following formula with two free parameters (T, a LLS threshold that each interaction must exceed, and D, a parameter

that represents the relative dependency between data sets) can be used to integrate data sets:

WS ¼ L0 þ
Xn
i¼1

Li

D � i
, for all L � T,

where L0 represents the maximum LLS score for a given gene pair, and i is the rank order index of LLS scores,

ranking gene pairs starting from the second-highest LLS with descending magnitude for all n remaining LLS scores.

For integration, we consider only LLS scores above the threshold T, thereby excluding noisy low scoring linkages.

The free parameter D ranges from 1 to þ1, and is optimized to maximize overall performance (measured by the area

under a recall-precision curve) of the integrated model. Low D-value indicates more independence among the data

sets.

An implicit feature of such a training procedure using benchmarking is the introduction of free parameters.

Introducing too many parameters may result in a trivial ‘memorization’ of the reference interactions rather than actual

learning that will be predictive for many unknown interactions. One way to detect overtraining is to use only a subset

of the reference data set for training, retaining the rest for testing the predictive power of a network. One common

approach to use is k-fold cross-validation. Here the entire training set is randomly divided into k subsets with no

overlap, and then the network is trained using k�1 subsets and tested using the unused subset. The average error rate

between trained and tested scores from k repeats of validation can then be used to detect any overtraining. Another

approach is 0.632 bootstrapping where each new training set contains on average 63.2% of original training set using

sampling with replacement [61]. This method is particularly suited for learning with the small training sets.
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positives’ (x-axis). In a ‘perfect’ network, using data

from a ‘perfect’ screen the network should return all

true positives with no false positives, and the ROC

curve should follow the y-axis and the area under

the curve (AUC) would equal 1. In the case of a very

poor network, the ROC curve would lie along the

diagonal of the plot (true positives and false postives

recovered with equal probability) and the AUC

would equal 0.5. Therefore, ROC curves provide a

visual assessment of the ability of a network to

connect a set of genes, and the AUC values provide a

numerical measure of this.

We illustrate how reverse genetic data and ROC

curve analysis can be used to test a gene network in

this way using the ‘Wormnet’ network for C. elegans
[4]. This network is currently the most extensive

network for C. elegans and can be searched with

groups of genes and downloaded from http://

www.functionalnet.org/wormnet. In C. elegans,
there have been >40 phenotypes scored in

genome-wide RNAi screens (reviewed in [48] and

[49]). In Figure 3, ROC curves for this network are

shown for each of 43 RNAi phenotypes. As can be

seen in Figure 3A, for 29 of these phenotypes

the genes are very clustered in the network. That is,

their ROC curves lie to the top left of the plots

and the genes with these phenotypes can be

successfully predicted using Wormnet. For a further

10 phenotypes (Figure 3B) the associated genes are

reasonably connected, but for four phenotypes the

genes are no more connected than random genes

(Figure 3C). The genes associated with these four

phenotypes can therefore not be predicted using

Wormnet. Also, apart from showing how well a

network can be used to predict the genes associated

with many different phenotypes, ROC curves can

also be used to compare the predictive power of

different networks [4].

The main conclusion from the ROC analysis

applied to both C. elegans [4] and yeast [47] is that a

single integrated network constructed using cur-

rently available data can be predictive for the vast

majority of the loss-of-function phenotypes that

have ever been tested in these species. Since these

phenotypes range across a very wide range of

processes and scales, we can conclude that a single
integrated network can be predictive for many

different aspects of the biology of both unicellular

organisms and multicellular animals.

HOWCAN YOUUSE A
FUNCTIONALGENENETWORK?
We have described above how high-quality func-

tional gene networks can be constructed using

existing data. Several of these networks have

Figure 2: Scoring the predictive power of a network using ROC curves analysis. This schematic figure illustrates
ROC curve analysis with examples of two contrasting sets of seed genes, one (black node) is highly predictive using
the network, the other (grey node) is not predictive using the network. All genes (both seed and non-seed genes) in
the network are scored by their total connections to a set of seed genes (either black or grey). Each curve plots the
recovery of known‘seed’genes (sensitivity, y-axis) against the recovery of non-seedgenes1-specificity, x-axis as the list
of genes ranked by their connectivity score to the seed genes is descended. Black seeds are well connected to each
other in thenetwork and scoredhigher thannon-seedgenes.Therefore,mostof seedgenes arerecoveredbeforenon-
seedgenes, with the resulting ROCcurve approaching left upper corner of the plot (blackcurve line). In contrast, grey
seeds are not connected at all and score zero.Therefore, the recovery rate of grey seeds follows the random expecta-
tion (greydiagonal line).Thebehaviourof anROCcurve canbe summarizedby areaunder theROCcurve (AUC) value.
Highly connected black seed genes result in a high AUC (0.93), but disconnected grey seed genes result in the AUC of
random expectation (0.5).
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been constructed to date, and we list examples for

C. elegans in Table 2. Another important question is

how best one can use these networks. The most trivial

use of such a network is to look up a gene of interest

and to see which genes are connected to it, what the

evidence is for each of these connections, and then to

use this information to guide future research.

However, a more powerful way to use these networks

is to search a network with groups of genes that are

known to be important for a common process or

phenotype [4, 47]. If you know a handful of genes

that are important for a process, then it is much better

to search a network using this group of ‘seed’ genes

rather than using individual genes. For example, the

web interface for Wormnet (http://www.functio-

nalnet.org/wormnet/) allows the network to be

searched using a list of query genes, returns a ROC

curve that shows how well these query genes are

clustered in the network (i.e. whether the network is

predictive for these genes) and a list of all the genes

that are predicted to interact with the query genes.

The output also shows all the lines of evidence that are

used to predict these interactions.

This use of gene networks to identify new

candidate genes for a process of interest has been

termed ‘network-guided screening’ [4]. Given know-

ledge of a few seed genes that are important for a

process, a functional network can be used to predict

a set of additional genes that can then be exper-

imentally tested for their role in the process. To

identify new candidate genes, every gene in the

network can be ranked according to the sum of its

connections to the known seed genes ( just as in

the ROC analysis described earlier in the article).

Genes are then tested for their involvement in the

process starting from the highest ranked genes

and proceeding down the list. This approach

dramatically reduces the number of genes that need

to be tested. However, the approach should not

entirely replace unbiased genome-wide screening,

because genome-wide screens still offer the best

method to identify entirely new pathways connected

with a phenotype.

We provide two examples of how network-

guided screening can work. The first example uses

genes that have been identified in RNAi screens as

increasing the lifespan of C. elegans. Three indepen-

dent screens have been performed for this phenotype

[50–52], allowing the validation rate of predictions

made using the data from a single screen to be

Figure 3: Using ROC curves to test the ability of a gene networks to predict loss-of-function phenotypes.The plots
showROCcurves for the‘Wormnet’networkofC. elegans using the data from 43RNAiphenotypes. In this analysis, all
genes in the genome are rankedby the sum of their interaction scores to a set of ‘seed’genes that are known to result
in each of the phenotypes when their expression is inhibitedby RNAi.The curves show thatWormnet performs very
well for predicting 29/43 phenotypes (A), better than random for a further 10/43 phenotypes (B) and the same as
random for 4/43 phenotypes (C).This figure is adapted, with permission from reference [4].
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estimated. For example, Hansen et al. [52] identified
29 genes that increase lifespan. If these genes are used

to search the Wormnet network for additional genes,

then of the top 50 novel genes connected to these

genes, 10 (20%) are validated in one of the other two

screens [4]. Of the top 200 most connected genes, 21

(10.5%) are validated in the other screens. Thus,

screening the top 50 or 200 predictions made by

Wormnet would have been between 100- and

4-fold more efficient in identifying longevity genes

than performing genome-wide screens (depending

upon the screen that is considered [4]).

The second example that we highlight concerns

genes that function in the Retinoblastoma/Synthetic

multivulva (Rb/SynMuv) pathway [53]. Previously,

six genes were known that could suppress the

phenotypic effects of mutations in this pathway

[54, 55]. Searching the Wormnet network with

these genes identified 62 and 142 connected genes

in the high-confidence ‘core’ and lower confidence

‘non-core’ networks. On testing these genes it was

found that 20% of the connected core and 5% of

the connected non-core genes also acted as suppres-

sors of the pathway. These numbers are 21- and

5-fold higher than the recovery rate from random

screening [4]. Moreover, although Wormnet did

not predict all the genes reported in a genome-wide

screen as having this function [56], the genome-wide

screen also did not report many of the genes

identified using Wormnet. This is an important

point—both network-guided screening and

genome-wide screens have appreciable false-negative

rates. Whereas for network-guided screening this is

primarily because a network is incomplete (and also

because not all genes that affect a phenotype are

necessarily directly connected—the inactivation of

two different biological processes may result in the

same phenotypic change at the level of an organism),

for genome-wide screens this is primarily because

screening �20 000 genes inevitably leads to an

appreciable false-negative rate.

We recommend using all the data contained in

a network—both the high- and low-confidence

interactions—for network-guided screening. Pro-

vided that a network is probabilistic (i.e. that each

interaction is weighted according to the confidence

in it being correct), then it is advantageous to use

both the weak and high-confidence data. This is

because a novel gene may be connected by multiple

weak lines of evidence to several of the seed genes

used to search a network, resulting in a high overall

ranking in the list of candidate genes. This does not

necessarily increase the number of genes that need to

be experimentally tested because genes that are only

connected by one low-confidence interaction will

still rank low on a list.

An additional advantage of using network-guided

screening to identify new genes involved in a

process is that the mechanistic interpretation of the

‘hits’ from a screen can be immediately aided

by inspection of the evidence used that connects

these genes to the seed genes in the network.

For example, the presence of predicted protein

interactions, co-regulation or orthologous interac-

tions in other species can all greatly help to guide

future mechanistic studies.

In a similar way, gene networks can also be used

to help interpret the results of more traditional

genome-wide screens, as they provide hypotheses for

how the genes identified in a screen are functionally

Table 2: Integrated gene networks for C. elegans

Network Reference Description Network availability

Co-expression network [35] A network of 22163 evolutionary conserved
co-expression relationships between �3400
genes.

http://cmgm.stanford.edu/kimlab/multiplespecies

Early embryogenesis network [13] A network of interactions between 661
embryogenesis genes based on protein^protein
interaction, phenotypic profiles and
co-expression relationships.

Manuscript supplementary datafile

Zhong and Sternberg [19] An integrated network of 18183 predicted genetic
interactions between 2254 genes.

http://tenaya.caltech.edu:8000/predict

STRING [8] An integrated and regularly updated protein
interaction and functional network for multiple
species, including C. elegans.

http://string.embl.de/

Wormnet [4] An integrated functional network of 384 700
interactions between 16113 genes.

http://www.functionalnet.org/wormnet/
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connected to each other. Moreover, ROC curve

analysis (as detailed above) can be used to determine

how functionally ‘coherent’ the genes identified in a

screen are. If interactions connect many of the genes

identified in a screen, then they will receive a high

AUC value, which suggests that given current

knowledge these genes can be organized into a

coherent ‘pathway’. In contrast, if the genes are not

very inter-connected in the network, then this

implies either that we do not yet have sufficient

data to mechanistically understand the process under

investigation (implying the need for more experi-

ments), or that the phenotype being investigated

may be affected by mutations in many functionally

unrelated genes.

CONCLUDING REMARKS
In this review, we have discussed how integrated

functional gene networks have been built and used

for model organisms such as yeast and C. elegans. In
these species, genome-wide reverse genetic screens

are relatively straightforward, which allows the

predictive power of these networks to be extensively

tested. Indeed, we hope that the C. elegans commu-

nity will now start to use these networks to guide

their research. However, the real power of network-

guided screening will be its application to other

organisms in which genome-wide screens are not

readily possible. For example, the approach could be

used in mice to identify new components of many

pathways of interest.

Perhaps more promisingly the approach could

also be applied to human biology. For most

hereditary human diseases there are a limited

number of genes that are known to be causally

mutated in the disease. Using integrated gene

networks it will be possible to use these known

examples to predict new candidate genes that can

then be tested for their association with a disease

in population studies or in existing association-study

data. In a typical genome-wide association study,

hundreds of thousands of single nucleotide poly-

morphisms are tested for association with a disease

phenotype. This multiple hypothesis testing greatly

reduces the statistical power of these studies to

identify real disease loci [57]. By predicting a limited

set of functionally related candidate genes, network-

guided screening may to some extent be able to

overcome this limitation and provide more statisti-

cally powerful approaches for identifying human

disease genes from association study data. Indeed,

several recent papers have demonstrated how this

approach may soon have a major impact on human

genetics [58–60]. Most importantly, the work in

model organisms has demonstrated that a single

high-quality integrated network can be predictive

for most of the different systems within an animal.

Therefore, a single integrated network may be

powerfully predictive for many different aspects of

human biology and disease.
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