
Stem cells have a crucial role during development,  
tissue regeneration and healthy homeostatic cell turn­
over. Collectively, all stem cells share the ability to self­
renew and differentiate into various different lineages. 
Embryonic stem (ES) cells — which are derived from the 
inner cell mass of the developing blastocyst — are pluri­
potent, whereas stem cells derived from adult tissues are 
generally only multipotent, maintaining a limited, tissue­
specific, regenerative potential1–3. In culture, ES cells can 
be propagated indefinitely, whereas adult tissue stem cells 
are more limited in this capacity.

Owing to their ability to generate tissue de novo  
following disease or injury there is widespread hope 
of developing stem cell­based therapies for various 
degener ative diseases4. Recent reports have indicated that  
differentiated adult cells can easily be reprogrammed to 
an embryonic­like pluripotent state5,6 (thus potentially 
providing a patient­specific source of pluripotent stem 
cells), as well as be reprogrammed to other adult cell 
types without intermediate reversion to a pluripotent 
state7,8. These findings have served to intensify interest 
in understanding the molecular basis of cell fate regu­
lation and the potential therapeutic uses of stem cells9. 
However, before such stem cell­based therapies can be 
routinely and safely developed, numerous crucial issues 
must be addressed. In particular, although great progress 
has been made towards understanding the roles of the 
homeodomain transcription factors OCT4 (also known 
as POU5F1) and NANOG, as well as SRY box­containing 
factor 2 (SOX2) in the maintenance of stem cell pluri­
potency10–16 (BOX 1), the extended molecular mechanisms 
of ES cell fate control have yet to be fully determined. 

To begin to deconstruct these intrinsically complex 
regulatory mechanisms it is now common for stem cell 
studies to combine low­throughput experimental tech­
niques with an ever­increasing range of different high­
throughput experimental techniques. Consequently, stem 
cell studies now often produce large amounts of data, and 
integrating these data into a coherent quantitative picture 
of cell fate control at the systems level is an important 
current research challenge. To address this challenge 
several groups have begun to apply systems biology 
approaches to understanding the regulation of stem cell 
fate decisions11,12,17,18.

Instead of focusing on the role of individual genes, 
proteins or pathways in biological phenomena, the aim 
of systems biology is to characterize the ways in which 
essential molecular parts interact with each other to deter­
mine the collective dynamics of the system as a whole19–23. 
However, it is difficult to understand collective behaviour 
in complex systems using experimental approaches alone. 
Therefore systems biology approaches often employ high­
throughput experimental techniques alongside theo­
retical and computational methods, which are specifically 
designed to dissect collective phenomena in complex sys­
tems24–26. Although to date systems biology approaches are 
mostly successful in lower organisms, such as yeast27,28 and  
bacteria29,30, the complexity of mammalian stem cell bio logy  
as well as the experimental reproducibility of many stem 
cell systems makes mammalian stem cell biology a good 
platform for the development of future systems bio logy 
techniques. In the context of stem cell biology, the aim 
of systems biology approaches is to characterize the 
molecular components involved in stem cell self­renewal 
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Inner cell mass
Early cells in the embryo that 
generate all lineages of the 
mature organism but do not 
give rise to the placenta.

Blastocyst
The embryo before 
implantation, which contains at 
least two distinct cell types: the 
trophectoderm and the inner 
cell mass.
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Abstract | Stem cell differentiation and the maintenance of self-renewal are intrinsically 
complex processes requiring the coordinated dynamic expression of hundreds of genes and 
proteins in precise response to external signalling cues. Numerous recent reports have used 
both experimental and computational techniques to dissect this complexity. These reports 
suggest that the control of cell fate has both deterministic and stochastic elements: 
complex underlying regulatory networks define stable molecular ‘attractor’ states towards 
which individual cells are drawn over time, whereas stochastic fluctuations in gene and 
protein expression levels drive transitions between coexisting attractors, ensuring 
robustness at the population level.
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and differentiation along specific lineages — from core 
transcription factors and the genes they regulate to pro­
teins and protein complexes to microRNAs (miRNAs) 
and other epigenetic marks — and elucidate their func­
tional interactions. The ultimate goal is to understand the 
dynamic behaviour of the resulting molecular circuits 
and elucidate how these circuits control cell fate changes.  
In the context of cellular reprogramming, systems biology 

approaches aim to use advances in the understanding of 
the molecular basis of normal cell fate decisions during 
development to generate strategies for the experimental 
conversion of adult cells from one type to another.

In this Review we discuss a range of ways in which 
high­throughput experimental techniques and compu­
tational methods are being fruitfully combined towards 
the development of stem cell systems biology approaches. 
We begin by outlining how data from high­throughput 
experiments can be used to reconstruct accurate stem 
cell regulatory networks. However, as stem cell regulatory  
circuits are typically intricate and contain highly nested 
feedback loops and  feedforward loops that give rise to com­
plex dynamics, it is difficult to elucidate cell behaviour 
from this regulatory circuitry. Therefore, we also discuss 
how computational techniques can be used to relate 
dynamic cell behaviour to regulatory architecture. In 
particular, we focus on how cell types can be thought of 
as balanced states or ‘attractors’ of underlying regulatory 
networks and the ways in which stochastic and determin­
istic mechanisms interact to define cell fate. We conclude 
with some suggestions of directions for future work in this 
area, including ways in which these notions might be used 
to better understand cellular reprogramming.

Dissecting stem cell complexity
molecular biology has entered the high­throughput 
age. Consequently, it is now typical for stem cell studies  
to make use of various disparate high­throughput tech­
niques to determine the molecular mechanisms of cell 
fate specification. These techniques include: micro­
arrays to assess genome­wide mRNA expression; high­
throughput chromatin immunoprecipitation (ChIP) 
such as ChIP-on-chip31, ChIP-seq (ChIP­sequencing)32 and  
ChIP-PET (ChIP­paired­end­ditag)10 to assess protein–DNA 
interactions; and mass spectrometry proteomics33 and 
phospho proteomics34 to assess the protein composition  
of molecular complexes and global changes in post­
translational modifications. because high­throughput 
techniques measure system­wide expression patterns, 
rather than focusing on the behaviour of key molecular 
elements, their development has driven increasing interest  
in systems biology approaches to understanding cell 
behaviour22. An important challenge in this area is how 
to best integrate the wealth of data that high­throughput 
studies produce into both a coherent qualitative and 
quantitative understanding of cell behaviour at the sys­
tems level. One approach to dissecting this complexity is 
to represent the underlying stem cell molecular regulatory 
mechanisms as ‘networks’.

Building molecular regulatory networks. To make sense 
of complex biological datasets it is becoming common to 
represent molecular components and their inter actions 
as networks and apply techniques from the mathe­
matical theory of graphs35 to their analysis (BOX 2). The  
combination of high­throughput experiments and  
the representation of high­dimensional data in the form 
of networks is the basis of much of modern systems bio­
logy. This integrated experimental–theoretical approach 
has greatly enhanced our understanding of a wide range 

Box 1 | the core embryonic stem cell transcriptional circuit

Maintenance of pluripotency and self-renewal in embryonic stem (ES) cells is controlled  
by a complex interplay between signalling from the extracellular environment and the 
dynamics of core transcription factors. Although self-renewal signalling pathways differ 
between mice and humans123, the core transcriptional circuitry seems to be remarkably 
conserved. In particular, the homeodomain transcription factors OCT4 (also known  
as POU5F1) and NANOG, as well as SRY box-containing factor 2 (SOX2), form a 
transcriptional module that has a central role in maintaining ES cell identity both in  
mice and humans10,11,13–16 (see the figure). This module is rich in positive feedback and 
feedforward loops (see also BOX 2). In particular, OCT4 and SOX2 form a heterodimer  
that positively regulates the expression of the Pou5f1 (which encodes OCT4), Sox2 and 
Nanog10,11,124,125. In addition, NANOG also interacts directly with OCT4 (not shown)17  
and positively regulates the expression of all three genes11. Thus, these three transcription 
factors regulate their own and each other’s expression in a highly coordinated manner, 
involving positive protein–protein and protein–DNA feedback loop interactions. 
Furthermore, all three transcription factors co-occupy numerous developmentally 
important genes and repress the expression of the genes involved in lineage commitment. 
These include: Hand1 (heart and neural crest derivatives-expressed 1), eomesodermin 
(Eomes) (both involved in trophectoderm development); Lhx5 (LIM homeobox 5),  
Otx1 (orthodenticle homologue 1), Hoxb1 (all involved in ectoderm development);  
Myf5 (myogenic factor 5), T (brachyury protein homologue), Gsc (goosecoid) (all involved  
in mesoderm development); and Foxa2 (forkhead box A2) and Gata6 (GATA-binding 
protein 6) (both involved in endoderm development). At the same time, OCT4, NANOG 
and SOX2 activate genes that are associated with self-renewal and pluripotency, including 
other ES cell-associated transcription factors such as Tcl (T cell leukaemia/lymphoma), 
Tbx3, Rest, Zic3, Hesx1 (homeobox expressed in ES cells 1), Stat3 (signal transducer and 
activator of transcription 3), Rex1 (also known as Zpf42), Sall4, Tcf3 and Dax1 (also known 
as Nr0b1)11. Thus, OCT4, SOX2 and NANOG are central to the maintenance of ES cell 
identity; appropriate expression of this protein trio holds the cell in a pluripotent 
self-renewing state by activating other ES cell-specific genes and repressing genes that 
are associated with lineage commitment, and loss of expression leads to loss of the 
self-renewing ES phenotype and commitment to differentiation. Dotted arrows denote 
potential feedback mechanisms from downstream targets back to the core circuit.
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Feedforward loop
The union of two distinct paths 
in a network from a source 
node to a target node, passing 
through intermediary nodes 
only once.

Attractor
A stable balanced state of a 
dynamical system towards 
which nearby configurations 
are drawn over time. Attractors 
can be stationary states,  
limit cycles (oscillators) or  
even strange (chaotic).

ChIP-on-chip
A high-throughput chromatin 
immunoprecipitation (ChIP) 
procedure that is used to 
identify binding sites for a 
specific transcription factor or 
other DNA-binding protein in 
the entire genome.

ChIP-seq
A procedure similar to 
ChIP-on-chip except that 
instead of hybridizing isolated 
DNA fragments bound by the 
protein of interest with a 
microarray, the fragments  
are amplified, size-selected 
and directly sequenced using 
massively parallel signature 
sequencing (MPSS)-based  
deep sequencing techniques.

of complex mammalian biochemical systems36, including 
signalling networks37,38, protein interaction networks39,40 
and genetic regulatory networks41. Representing complex 
biological systems as networks is useful as it provides 
a formal way to combine different types of biological 
datasets into a single conceptual framework42. 

Two key elements are required to construct a biologi­
cal regulatory network: a list of molecular parts (such as 
sets of genes, proteins or miRNAs) and a set of regulatory 
interactions between these parts (for example, activation or 
inhibition of expression). The molecular parts lists that are 
needed to construct a regulatory network typically come 
from data derived from high­throughput experiments (for 
example, sets of genes that are differentially expressed in 
treated or control conditions). Physical interactions between 
elements in the molecular parts list can be identified by 
techniques such as yeast two­hybrid screens or affinity  
purification followed by mass spectrometry (AP–mS);  
however, the regulatory nature of such interactions cannot 
be determined by these methods alone. Extracting putative 
functional connections between elements in the parts list 
often requires some computational input, either by reverse 
engineering regulatory networks from specific experimen­
tally derived datasets using sophisticated computational 
inference techniques41,43,44 or by comparing experimentally 
derived expression patterns with databases of interactions 
collated from the published literature45,46.

Stem cell regulatory networks. Recently, several exam­
ples of how high­throughput experimental techniques 
can be used to infer regulatory networks have been 
documented in the published literature on stem cells. For 
example, Wang and co­workers17 derived a high­quality 
protein–protein interaction network for pluripotency in 
mouse ES cells that is centred around the core stem cell 
transcription factor NANOG (FIG. 1a). To construct this 
network they adopted an iterative proteomics approach 
in which proteins that physically associate with NANOG 
and NANOG­associated proteins were identified using 

AP–mS. by doing so, they identified a complex network 
that is highly enriched in stem cell­specific transcrip­
tion factors, many of which transcriptionally regulate the 
expression of other members of the protein–protein inter­
action network. This indicates that stem cell fate control 
is highly combinatorial and involves coordinated inter­
actions between key transcription factors and the genes 
that encode them.

Similarly, numerous groups have used high­throughput 
ChIP techniques to identify targets of core ES cell trans­
cription factors, including NANOG14,16, OCT4 (rEF. 15) 
and SOX2 (rEF. 13), and thereby reconstruct core ES cell­
specific transcriptional circuits that are centred around 
these (and other) factors10–12,47–50 (FIG. 1b). Furthermore, 
recent reports have also connected miRNAs51 and key 
stem cell signalling pathways32 to the core ES cell trans­
criptional circuit. These reports are useful because, by 
finding functional associates of known core factors, they 
produce a detailed dissection of the stem cell molecular 
regulatory core and thus provide the basis of a systematic 
understanding of the control of stem cell fate. However, by 
focusing on interactions involving a small number of cen­
tral transcription factors, these studies are also limited in 
their ability to elucidate the extended molecular regulatory 
networks that underpin cell fate decisions. Nevertheless, 
although techniques such as AP–mS and high­throughput 
ChIP inevitably identify numerous false positive inter­
actions, as is observed by the often poor overlap of results 
from comparative studies52,53, the datasets of inferred 
interactions produced by these techniques can be useful 
for the generation of hypotheses if used with caution. 

In contrast to these focused experimental studies, 
a recent report by müller and co­workers18 used a new 
computational approach to reconstruct an extended stem 
cell regulatory network. First, they generated a database 
of global gene expression patterns in approximately 150 
samples of pluripotent, multipotent and differentiated 
human cell types, and named this database the ‘stem 
cell matrix’. Using a computational clustering technique, 
they found that undifferentiated pluripotent stem cells 
samples, including ES cells and induced pluripotent stem 
(iPS) cells, strongly clustered together on the basis of gene 
expression. Then, they used a graph theoretic algorithm 
known as mATISSE (module analysis via topology of 
interactions and similarity sets)54 and identified a putative 
pluripotency network, which they named PluriNet. This 
was achieved by searching for connected sub­networks 
involving pluripotency­related factors from a previously 
compiled background network of human protein–protein  
and protein–DNA interactions, including those in the 
NANOG interactome described by Wang and co­workers17.  
PluriNet is an undirected graph (that is, regulatory direc­
tions and effects such as activation or inhibition are not 
specified), and many interactions have yet to be directly 
experimentally characterized in any specific cell type. 
Despite this, the approach of müller and co­workers18 
is useful because it provides a formal way to ‘project’ 
experimentally derived datasets onto previously com­
piled databases and interpret new findings in the context 
of known biological processes45,46. Efforts such as PluriNet 
are inevitably works­in­progress; as our understanding of 

 Box 2 | Regulatory networks and graphs

Mathematically, a network is a data structure 
known as a graph35, consisting of a set of nodes 
and a set of edges or arcs (which are directed 
edges) that connect the nodes in the graph.  
In the context of biological regulatory networks, the node set represents the list of 
molecular components in the network (for example, genes and proteins) and the edge 
set describes functional relationships between the nodes. So, in a protein–protein 
interaction network, nodes represent proteins and edges represent physical 
interactions between proteins, whereas in a transcriptional network nodes represent 
transcription factors and arcs represent functional regulation of transcription.  
The figure shows examples of simple directed and undirected graphs. In each case, 
there are three nodes, labelled 1, 2 and 3, and edges and arcs are coloured black.  
On the left is an undirected graph on the mutually connected nodes. In this case, the 
edges have no specified direction and so are drawn without arrowheads. In the middle  
is a three-node feedback loop. In this case the nodes regulate each other in a directed 
cyclic manner. On the right is a three-node  feedforward loop. In this case, node 1 
regulates nodes 2 and 3, and node 2 also regulates node 3. Feedback and  feedforward 
loops such as these are common in transcriptional regulatory networks and can give rise 
to complex dynamic behaviour. For example, the presence of a positive feedback loop is 
a necessary condition for the existence of multiple stable stationary states74 (see BOX 3). 
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ChIP-PET
A procedure that is similar to 
ChIP-on-chip and ChIP-seq.  
In this case isolated DNA  
from the ChIP portion of the 
experiment is digested into 
18-nucleotide-long fragments 
that are concatenated, tagged 
and sequenced (known as 
paired-end ditags (PETs)).  
The sequences of the PETs  
are then reassembled and 
compared with the genome to 
identify actual binding sites.

Reverse engineering
Inferring regulatory interactions 
from high-throughput datasets 
using computational and 
statistical inference techniques.

Induced pluripotent stem 
(iPS) cell
A type of pluripotent stem cell 
that can be produced by 
various adult somatic cell types 
by forced expression of certain 
combinations of key embryonic 
stem cell-associated 
transcription factors.

the molecular mechanisms of cell fate control becomes 
increasingly detailed, it will become important that prior 
knowledge is appropriately used, tested for reliability and 
organized in a coherent, structured and user­friendly 
manner so that new results can be assessed appropriately 
in light of previous data.

With this in mind, we have constructed a database of 
directed transcriptional interactions in ES cells as a supple­
ment to this Review (see Integrated Stem Cell molecular 
Interactions database). This repository currently integrates 
the data presented in 12 recent publications10–12,31,47,49–51,55–58, 
which collectively report high­throughput ChIP profiling 
experiments for 20 transcription factors that are known to 
have a central role in ES cell fate regulation. In total, the 
repository currently contains 50,250 putative transcription 
factor–gene interactions that have been identified specifi­
cally in ES cells. We connected the 20 core transcription 
factors to their gene targets and formed a directed back­
ground network (BOX 2). This network is highly dense 
and rich in feedback and  feedforward loops; this indi­
cates that many of the 20 core transcription factors share 
target genes, which suggests combinatorial regulation of 
gene expression. To generate a more focused network we 
coll ated a shortlist of 264 genes that are known to have an 
important role in the maintenance of ES cell self­renewal, 
pluripotency, cell cycle progression and differentiation 
along all three germ layers (mesoderm, endoderm and 
ectoderm). by searching for shortest paths between nodes 

in the background network we obtained two subnetworks: 
a network containing 156 mutual interactions between the 
20 core transcription factors (FIG. 1b) and a network con­
taining 1,739 links connecting the 264 shortlisted genes. 
Although directed, most of the interactions in these sub­
networks are not signed (that is, regulatory effects such as 
activation or inhibition are not provided). However, regu­
latory effects can be inferred from studies that combine 
ChIP experiments with mRNA expression profiling that 
is obtained following loss­of­function experiments. 

We have provided this initial database of interactions 
and the background and focused sub­networks as a web­
based resource to accompany this Review (see Integrated 
Stem Cell molecular Interactions database). On this site 
users can navigate from node to node and examine how 
target genes are co­regulated by core transcription factors. 
We invite the stem cell community to deposit additional 
interactions in this repository as they are reported and 
thereby continually improve this resource.

The work of Wang and co­workers17, our initial trans­
criptional interaction repository and the work of müller 
and co­workers18 illustrate two different (and comple­
mentary) approaches to determining stem cell regulatory 
architecture. In the first approach precise experimenta­
tion is used to elucidate high­confidence functional inter­
actions among a limited number of key components. In 
the second approach extended networks are generated by 
inferring interactions between numerous components 

Figure 1 | Stem cell regulatory networks. a | Schematic showing high-confidence protein–protein interactions 
between NANOG and NANOG-associated proteins, as derived from rEFS 17,127,128. b | Schematic showing the  
stem cell transcriptional regulatory circuit. This network was reconstructed from the data presented in various recent 
high-throughput chromatin immunoprecipitation (ChIP) experiments10–12,31,47,49–51,55–58. Both networks are rich in regulatory 
loops (see also BOX 2), suggesting a complex system with the ability to exhibit a wide range of context-dependent 
dynamic behaviours. Factors present in both the NANOG interactome and the core transcriptional network are shown in 
red. Note that there is great overlap between these two networks (with shared factors being the most central elements  
of both networks), suggesting that the core transcription factors regulate each other’s expression in a coordinated, 
combinatorial manner, involving both protein–protein and protein–DNA interactions. See Integrated Stem Cell 
Molecular Interactions database for an interactive version of this network. 
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Epigenetic modifier
A substance that causes a 
change in gene expression 
without changing DNA 
sequence.

Molecular noise
Stochastic fluctuations in 
molecular expression levels 
originating from the inherent 
the indeterminism of 
molecular processes and the 
unpredictable variability of the 
extracellular environment.

using computational methods without direct experimen­
tal validation. It will be important to elucidate the nature 
of extended regulatory networks while maintaining high 
confidence in the inferred interactions. Perhaps the most 
promising way to address this issue is the combination 
of meticulous experimentation with computational infer­
ence, in which computational techniques are used to infer 
initial interaction networks and experimental techniques 
are used to validate inferred interactions and refine net­
work structure59. In this regard, integration of large­scale 
RNA interference screens58,60,61, in which thousands of 
genes may be systematically and accurately individually 
silenced in a cell population, with high­throughput ChIP 
experiments and subsequent genome­wide expression 
profiling will be particularly useful in validating inferred 
regulatory interactions and their effects. 

In summary, evidence suggests that ES cell fate is 
controlled by a core transcriptional circuit enriched in 
feedback and  feedforward loops that itself is part of a 
much more extensive and highly complex dynamic regu­
latory network involving protein–protein interactions17, 
additional transcription factors12, signalling pathways32, 
miRNAs51 and other epigenetic modifiers56. This complexity 
is central to the cell’s ability to respond in a flexible way 
to disparate exogenous stimuli; however, it also makes it 
extremely difficult to determine cell behaviour from the 
regulatory network structure. Therefore, in the following 
section we discuss ways in which mathematical models 
can be used to make sense of this complexity and link 
molec ular regulatory architecture to cell behaviour. In 
particular, we focus on the ways in which notions from 
dynamical systems theory can be used to interpret cell 
types as balanced states or attractors of underlying regu­
latory networks, and how molecular noise has a role in 
defining cell fate by triggering stochastic transitions 
between coexisting attracting states.

the stem cell landscape
Consider the core stem cell transcriptional network given 
in FIG. 1b. Although this network is small, it is highly com­
plex, containing many feedback and feedforward loops, 
and this complexity makes it extremely difficult to deter­
mine how this network behaves (that is, how it controls 
stem cell fate). To begin to elucidate how the architecture 
of this network relates to stem cell fate, we first note that 
this network is not static but instead encodes the essential 
topology of a complex dynamical system (BOX 3) in which 
transcriptional activation and inhibition may loosely be 
thought of as ‘forces’ that push and pull the cell in different 
genetic directions. Thus, the state of a cell is determined by 
its transcriptional (or, more generally, its molecular) expres­
sion profile, which in turn depends dynamically on the 
regulatory interactions that are encoded in its underlying  
molecular regulatory architecture.

mathematical models can help to better under­
stand the molecular basis of cell behaviour and can be 
approached at various different levels62–64. For example, 
coarse­grained models, such as boolean networks, that 
assume that genes adopt a binary ‘ON’ or ‘OFF’ state 
and regulate each others’ expression through simple 
boolean functions are useful in determining the collec­
tive behaviour of large complex regulatory networks65. 
by contrast, differential equation models, which focus in 
detail on smaller regulatory circuits in which additional 
information (such as mRNA and protein production  
and degradation rates) are known, are useful when 
examining the fine details of regulatory dynamics36. The 
most successful examples of integration of mathematical  
modelling with experimental approaches are from model 
organisms, such as yeast and bacteria64, which have gener­
ated a wealth of data. However, advances in experimental 
techniques are now increasingly facilitating the develop­
ment of mathematical models of mammalian cell fate 
control by providing the required data. This has lead to 
an increasing interest in the application of techniques that 
have been developed in model organisms to mammalian  
cell biology66–72.

The central notions of this joint theoretical–experi­
mental approach to cell fate go back to the 1940s, to the 
work of the physicist max Delbrück73,74 and the develop­
mental biologist Conrad Waddington75,76. Over 50 years 
ago Waddington presented his now famous ‘epigenetic 
landscape’ as  a conceptual picture of development75,76. 
Waddington’s view was that development occurs simi­
larly to a ball rolling down a sloping landscape containing 
multiple ‘hills’ and ‘valleys’: as development progresses, 
cells take different paths down this landscape and so adopt 
different fates, and uncontrolled differentiation does not 
occur because the hills act as barriers by separating the 
landscape into distinct valleys (cell types). So, in this view, 
differentiation is not terminal, but instead different cell 
states are maintained by epigenetic barriers that can be 
overcome given sufficient perturbation. In Waddington’s 
words “This ‘landscape’ presents, in the form of a visual 
model, a description of the general properties of a com­
plicated developing system in which the course of events 
is controlled by many different processes that interact in 
such a way that they tend to balance each other.” (rEF. 77). 

 Box 3 | Dynamical systems, attractors and multi-stability

The molecular state of a cell can be described by its state vector  
s(t) = [m

1
(t),m

2
(t),m 

3
(t),…,m

n
(t)], in which m

n
(t) denotes the concentration of the ith 

molecular component at time t.The set of all possible molecular configurations is called 
the ‘state space’. A dynamical system is a mathematical description of how a system’s 
state vector changes over time based on the interactions between all the various 
components in the system (in the form of a set of coupled differential or difference 
equations, for example). Owing to the coupling between molecular components, the 
expression levels of the different components in a dynamical system generally change 
over time in a coordinated way, and this coordination restricts the trajectories that the 
system may take in state space over time. An attractor of a dynamical system is a 
minimal subset of state space A, such that all trajectories starting in the vicinity of  
A approach A eventually. Intuitively, attractors can be thought of as stable preferred 
states in which all the various interactions in the system are balanced and towards which 
the system is drawn over time. Attractors can be fixed points, corresponding to static 
stationary states, or more complex sets, corresponding to dynamic states such as limit 
cycles (oscillators) or strange (chaotic) attractors79. For a given attractor A, the subset of 
state space N

A
 for which all trajectories starting in N

A
 approach A for large time is known 

as the ‘basin of attraction’ of A. Some dynamical systems have many coexisting 
attractors, in which case the system is said to be ‘multi-stable’. The basins of attraction  
of the various attractors in a multi-stable system partition the state space into discrete 
pieces. As stationary attractors can intuitively be associated with the minima of an 
‘energy-like’ function79, in the context of cellular differentiation this partitioning is 
sometimes referred to as the attractor landscape69 (see also FIG. 2).
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Multi-stable system
A dynamical system that 
supports the existence of two 
or more coexisting attractors 
for some region of parameter 
space.

Although Waddington viewed this epigenetic landscape 
as a qualitative conceptualization of development, the 
idea that cell types may be related to ‘balanced states’ of 
an underlying regulatory system bears a striking resem­
blance to the modern mathematical notion of attractors 
of dynamical systems78,79.

Attractor landscapes. Although formal mathematical  
definitions are complicated78, broadly speaking an attrac­
tor can be thought of as a balanced state (or set of states) 
towards which a system will converge given sufficient 
time79. Consider, for example, a marble at rest at the 
bottom of a bowl. If perturbed away from the bottom 
of the bowl, the marble will track out a transient trajec­
tory around the sides of the bowl, only to finally come 
to rest at the bottom again: the default resting position 
of the marble is at the bottom of the bowl, and this is the 
state towards which the marble is attracted to regardless 
of where it starts in the bowl. Consider now the more 
interesting case of a marble rolling around a smooth 
convolu ted surface with many hills (local maxima) and 
valleys (local minima), as illustrated in FIG. 2. Now the 
marble will come to rest at the bottom of one of many 
possible valleys, with its final resting place depending 
on its starting position and the nature of the particular 
perturbation that displaced it from its initial state. In this 
case, each local minimum is an attractor of the marble’s 
dynamics, and we might refer to the surface as a whole 
as the attractor landscape.

more formal descriptions of dynamical systems, attrac­
tors and attractor landscapes are given in BOX 3; however, 
this intuitive picture of attractors as local minima of a 
complex ‘energy­like’ landscape is conceptually inform­
ative, and the parallels with Waddington’s epigenetic land­
scape are clear. In the context of cellular differentiation, 
an attractor is an internal molecular state (or set of states) 
towards which the cell is drawn, in which all the molecular 
forces that are pushing and pulling the cell in different 
molecular directions are balanced. Thus, attractors corre­
spond to stable molecular configurations and have accord­
ingly been associated with different cell types65,80. A system 
that exhibits many coexisting attractor states is said to be 
a multi-stable system; the notion that different cell types 
may correspond to different stable states of an under­
lying multi­stable regulatory system was first suggested by 
Delbrück73,74. The notion that cell types might correspond 
more generally to attractors of ‘high­dimensional’ regula­
tory networks was first proposed by Kauffman65,80 and has 
been examined extensively in the theoretical published 
literature since the late 1960s36,65,80–83.

Despite this longstanding theoretical interest, direct 
experimental evidence that different cell types might 
correspond to attractors of multi­stable genetic regula­
tory networks has been provided only recently66,68,84–89. 
For example, in 2005 Huang and co­workers85 provided 
the first evidence that mammalian cell types might corre­
spond to attractors of a high­dimensional dynamical sys­
tem. To do so, they took advantage of the fact that human 
Hl60 promyelocytic progenitor cells can be triggered to 
differentiate into neutrophils in vitro if they are stimulated 
with all­trans retinoic acid (ATRA) or dimethylsulph oxide 
(DmSO). by taking samples for microarray analysis at dif­
ferent time points during the differentiation process, they 
showed that ATRA and DmSO initially triggered different 
genetic responses, which, however, ultimately converged 
over time to a common stable pattern of gene expression. 
This ‘homing in’ is characteristic of an attracting state and 
suggests that the Hl60 neutrophil state is an attractor of 
an underlying molecular regulatory network. Similarly, 
others have shown that if sub­optimal ATRA stimulation 
is removed before commitment is complete, Hl60 cells 
do not differentiate into neutrophils but instead revert 
back to the promyelocytic state66. Stability in the face of 
weak perturbations is another hallmark of an attracting 
state, so this work indicates that the Hl60 promyelo­
cytic state is also an attractor of an underlying molecular 
regulatory network.

In the context of mammalian ES cell biology, although 
direct evidence for attracting states has not yet been 
provided, indirect evidence for a self­sustaining self­
renewing state in mouse ES cells was recently provided 
by Ying and co­workers90. They showed that, if shielded 
from inductive stimuli through fibroblast growth factor 
receptor and extracellular signal­regulated kinase signal­
ling and treated with a glycogen synthase kinase 3 inhibi­
tor to restore viability, mouse ES cells can self­renew in 
the absence of additional maintenance factors such as 
leukaemia inhibitory factor (lIF). This indicates that the 
ES self­renewing state is a self­sustaining ‘ground state’ of 
the core transcriptional circuitry.

Figure 2 | cellular reprogramming as navigation through a complex attractor 
landscape. In a complex cellular attractor landscape there might be many coexisting 
stationary attractors (here represented as local minima), each of which might be 
associated with a unique molecular signature. In this view, cellular reprogramming 
corresponds to guiding the cell through the landscape from one local minimum to 
another (shown by the dotted arrows). As there might be many distinct paths between 
minima (both direct and through intermediary minima), reprogramming from one cell 
type to another might be achieved though numerous different routes5,108,120.
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26S proteasome
Large multi-subunit protease 
complex that selectively 
degrades multiubiquitylated 
proteins. It contains a 
20S particle that carries the 
catalytic activity and two 
regulatory 19S particles.

The notion that cell types correspond to attractors 
of underlying regulatory networks is appealing from a 
systems biology point of view, as attracting states do not 
depend solely on individual regulatory elements, but 
rather result from the collective behaviour of the cell’s 
molecular regulatory circuitry as a whole. However, in 
many circumstances cell phenotypes are not well defined, 
and there might be substantial variability between cells, 
even within a clonal population in a homogeneous 
environ ment91. Thus, in addition to a deterministic control  
by molecular regulatory circuits, it has long been sug­
gested that cell fate specification also has a stochastic 
element92–95.

Stochasticity and stem cell fate. Gene expression is an 
inherently ‘noisy’ process96: owing to the stochasticity of 
molecular processes, such as transcription and translation 
(intrinsic noise), and the effect of environmental noise on 
these processes (extrinsic noise), gene and protein expres­
sion levels in a given cell are continuously fluctuating97. As 
molecular noise can markedly affect cell behaviour, cells 
have adapted a range of sophisticated mechanisms to  
control molecular noise98. For example, they use molec­
ular mechanisms, such as the 26S proteasome, to buffer 
noise by targeting transcriptional pre­initiation complexes 
for degradation99,100. Furthermore, cells can use epigenetic 
regulatory agents, such as polycomb group repressors56, 
to restrict the transcriptional activation of develop mental 
genes101. In addition, they use regulatory network motifs, 
such as negative feedback loops, to modu late the levels 
of noise102,103.

In the context of stem cell differentiation, there has 
been a longstanding interest in the role of stochasticity in 
determining cell fate92–95. For example, in the early 1960s 
mcCulloch, Till and Siminovitch92 examined the distri­
bution of stem cell­like colony forming units (CFUs) in 
the spleens of irradiated mice following the injection of 
a suspension of adult mouse bone marrow cells. They 
found that the proportion of CFUs per colony varied 
greatly from colony to colony and was consistent with a 
‘birth’ and ‘death’ process in which cell fate decisions (that 
is, to differentiate or self­renew) were made stochastically. 
Similarly, in the 1980s Ogawa and co­workers93,95 studied 
pairs of cells derived from single haematopoietic progeni­
tors (‘paired progenitors’). They showed that if isolated 
and allowed to form separate colonies in vitro, paired 
progenitors show remarkably variable and seemingly  
uncorrelated patterns of differentiation.

These classic papers suggest that, in addition to deter­
ministic control by an underlying regulatory network, 
stem cell fate specification also has an intrinsically sto­
chastic element. Furthermore, numerous reports have 
suggested that rather than being a destabilizing force to 
be minimized, molecular noise can have a positive role in 
determining cell fate104,105. A key observation in this regard 
is that molecular noise can give rise to robust heterogene­
ity at the cell population level96,104 by triggering stochastic 
transitions between coexisting attractor states84 (BOX 4). 
For example, it has been suggested that in micro organisms 
noise­driven heterogeneity in a clonal population allows 
adaptation during times of stress without the need for 

genetic mutations, by providing a means for individual 
cells to ‘explore’ different phenotypes in a dynamic man­
ner104,105. This view is supported by the observation that 
in yeast the expression of proteins involved in responses 
to environmental changes are more noisy than those 
involved in protein synthesis106.

Evidence that a similar mechanism might give rise to 
heterogeneity in mammalian progenitor cell populations, 
allowing dynamic ‘priming’ of progenitors towards dif­
ferent lineages, has recently been provided by Chang and 
co­workers84. To do so, they studied heterogeneity in the 
expression of the stem cell surface marker SCA1 (stem cell 
antigen 1) in a clonal population of Eml mouse multi­
potent haematopoietic cells84. First, using flow cytometry 
they found that in Eml cells SCA1 expression exhibits 
a characteristic bimodal distribution. Then, to probe the 
origin of this heterogeneity they used flow cytometry to 
isolate cells with the highest, middle and lowest SCA1 
expression for further culture. Surprisingly, they found 
that over time all three selected fractions reconstituted 
the parental bimodal distribution. With the aid of mathe­
matical analyses they identified discrete noise­driven 
trans itions between two underlying and coexisting attract­
ing states as one source of this universal reconstitution.  
This report is interesting, as it suggests that cells do not 
have a rigidly fixed identity but instead can transition sto­
chastically between coexisting attracting states at a rate that 
depends on transcriptome­wide noise levels. However, 
crucially, at the population level the fraction of cells in 
the vicinity of each of the attracting states remains fixed 
in the long term (BOX 4). Thus, although cell identity might 
be somewhat indeterminate at the single cell level, the  
distribution of cell types at the population level is robust.

The notion that cell fate is controlled by the interplay 
between deterministic regulatory mechanisms and sto­
chasticity is not new: a similar observation was made by 
mcCulloch, Till and Siminovitch92, who observed that 
“individual cells within the population are not closely 
regulated” and that “it is the population as a whole that is 
regulated rather than individual cells.” However, the work 
of Chang and co­workers84 provides an elegant mechanism 
for this observation. Interestingly, another report (which 
was, in fact, published before the work of Chang and co­
workers) has shown a remarkably similar phenomenon 
in mouse ES cells107. In this report, Chambers and co ­  
workers107 used flow cytometry to profile NANOG 
expression in mouse ES cells using green fluorescent 
protein targeted to the Nanog locus. They found that, 
similarly to SCA1 expression in haematopoietic precur­
sors, mouse ES cells also show variability in NANOG 
expression, which is undetectable in a fraction of OCT4­
expressing cells. Importantly, they found that following 
cell sorting using flow cytometry, both NANOG­positive 
and NANOG­negative cell fractions had a heteroge­
neous distribution of NANOG expression over time 
and that ES cells lacking NANOG expression showed 
an increased propensity to differentiate. Their results  
suggest that NANOG expression levels fluctuate in mouse 
ES cells and that the NANOG­low expression phase might 
be a temporary ‘window of opportunity’, allowing dynamic 
priming of cellular commitment to differentiation.
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Systems biology of cellular reprogramming. The reports 
discussed so far suggest that at the single cell level cell 
fates can exhibit a surprising degree of flexibility. In 2006 
Yamanaka and co­workers5 made a remarkable discovery 
concerning the extent of this flexibility: they showed that 
following retroviral infection with just four transcription 
factors — OCT4, SOX2, KlF4 (Kruepper­like factor 4) 
and mYC — adult fibroblasts can be reprogrammed to a 
state that has many ES cell characteristics. These include 
an ES cell morphology, the ability to form teratomas 
(a type of tumour containing tissue from all three germ 
layers) following subcutaneous injection in nude mice 
and the ability to differentiate to all three germ layers 
in vitro. The cells were termed iPS cells on the basis of 
their similarity to ES cells.

Since these initial reports, the original reprogram­
ming strategy of Yamanaka and co­workers has been 
refined by numerous groups108–118. In particular, repro­
gramming has been achieved using forced expression 
of various alternative reprogramming factors108,109 

(including in the absence of forced mYC expres­
sion109–111) in a range of adult somatic cell types, such 
as fibroblasts5,6, hepatocytes112, gastric epithelial cells112, 
mesenchymal stem cells113 and neural stem cells114. 
Furthermore, improved selection criteria have allowed 
the derivation of more completely reprogrammed cells, 
which are similar to ES cells not only in morphology, 
differentiation capacity, response to cytokines such as 
lIF and the ability to form teratomas, but also in glo­
bal genetic and epi genetic profiles115 and the ability 
to form viable chimeras following their injection into 
blastocysts116,117.

Taken together, these reprogramming reports indi­
cate that somatic cell fate is not terminal, but instead 
that cell ular integrity is preserved by reversible epige­
netic barriers that can be overcome given the correct 
stimuli. These observations are in accordance with 
Waddington’s view of development and the idea of cell 
types as attractors. The fact that cellular reprogramming 
is a multistep process119 involving numerous (possibly 
stochastic120) transitions indicates that cellular repro­
gramming might correspond to navigation through a 
complex noisy attractor landscape (FIG. 2). Crucially, this 
landscape describes both the molecular characteristics 
of the various different cell types and the relationships 
between these different cell types — that is, how easy 
or difficult reprogramming between distinct cell types 
might be121.

As the processes involved in cellular reprogramming 
are highly complex, it is a considerable challenge to map 
this cell fate landscape. We view the generation of such 
a map as a long­term goal for stem cell systems biology 
that will require coordinated and sustained collaboration 
between scientists from a range of disciplines using both 
experimental and theoretical approaches. However, some 
first steps towards mapping this landscape might be taken 
immediately using current technologies. For example, the 
fact that reprogramming of various adult somatic cells to 
a self­renewing pluripotent state can be achieved by many 
different methods5,6,108,120 is consistent with, although not 
yet proof of, the existence of a core ES cell attractor. In 
particular, although Ying and co­workers90 have shown 
that the self­renewing state of an ES cell is self­sustaining 
if the cell is shielded from inductive signalling, the hall­
mark attractor characteristic of stability in the face of 
different weak perturbations has yet to be shown for the 
ES cell state. To confirm the presence of such an attrac­
tor, similar approaches to those taken in establishing 
the presence of attractors in the haematopoietic system 
could be adopted. For example, an informative experi­
ment would be to use high­throughput techniques to 
measure temporal molecular expression patterns follow­
ing the treatment of ES cells with suboptimal inductive 
stimuli (such as administering low­dose or short­period 
retinoic acid treatment, or applying suboptimal levels of 
key pluri potency factors that target and inhibit mRNA). 
This would help to determine whether there is an induc­
tive point of no return before which perturbed cells revert 
back to the undifferentiated ES cell state when stimuli are 
removed and after which the undifferentiated ES cell state 
cannot be recovered simply by the removal of stimuli.

 Box 4 | A stochastic multi-stable switch

Consider the simple motif in which two transcription factors activate their own 
expression and mutually repress each others’ expression (see the figure, part a).  
This type of feedback naturally gives rise to multi-stability86,126 and provides the cell with 
the ability to make all-or-none fate decisions in response to external cues. The following 
stochastic differential equations describe the expression levels of two transcription 
factors (x

1
 and x

2
 ) that are interacting in this way:

σ σ

In these equations k
1
, k

2
 and

 
k

3
 are the (normalized) rate constants at which 

transcription factors bind to promoters; K
1
 and K

2
 are (normalized) dissociation rate 

constants; b
1
 and b

2
 are (normalized) decay rate constants; σ

1
 and σ

2
 are constants 

determining the amplitude of noise in the system; and W denotes a Weiner process 
(Brownian motion). In this simple illustrative case we have assumed that each 
transcription factor binds cooperatively to its own promoter and to that of the other 
transcription factor as a homodimer (which is why x is raised to the power of two). In 
the absence of molecular noise (σ

1
=σ

2
=0) this model has many coexisting steady state 

attractors (for appropriate parameter regimes). In the presence of molecular noise 
(σ

1
,σ

2
>0), individual cells do not settle at a single attractor but instead stochastically 

switch between distinct states at a rate that depends on the amplitude of molecular 
noise. However, over 
time the joint probability 
density p(x

1
, x

2
) (that is, 

the probability of finding 
a cell with expression 
levels of (x

1
, x

2
)) settles to 

a stationary state, and a 
robust distribution of cell 
types is achieved. The 
figure (part b) shows the 
stationary probability 
distribution for a 
representative simulation 
of this system: red hot 
spots indicate preferred 
genetic configurations at 
which cells will 
accumulate, and blue 
indicates low probability 
configurations.
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conclusions
The published literature on stem cell systems biology and 
reprogramming indicates that cell fate might be controlled 
by a complex interplay between determinism and stochas­
ticity. In the case of determinism, systems­level regu latory 
network dynamics define the molecular attracting states 
towards which the cell is drawn over time, and in the 
case of stochasticity systems­level molecular noise drives 
transitions between coexisting attractor states and ensures 
robustness at the population level.

However, current evidence for cellular attractors is 
limited to a few mammalian cell types. Additional experi­
ments are needed to clarify how universal these initial 
observations are. Furthermore, direct evidence for molec­
ular attractors is currently limited to the mRNA transcript 
level. As mRNA expression does not necessarily correlate 
with protein expression, additional studies are required to 
clarify how coordinated regulation at different molecular 
regulatory layers — including mRNA transcripts, pro­
teins and protein complexes, histone modifications, RNA 
polymerase, signalling pathways and miRNAs — specifies 
cellular attractor states. Similarly, although there have been 
some reports detailing the temporal molecular dynamics  
of ES cell fate changes following perturbation122, our 

understanding of the systems­level molecular dynamics 
of cell fate specification, particularly at the single cell level, 
is still incomplete. For this reason, we anticipate that the 
further development and use of high­throughput single 
cell genetic, epigenetic and proteomic techniques106 will be 
necessary to elucidate the nature of cell to cell variability 
and to better dissect the role of molecular noise in deter­
mining cell fate. In addition, experimental advances will  
have to be continually integrated with computational mod­
els to construct an accurate quantitative understanding  
of the regulation of stem cell fate. In this regard, stem cell 
systems biology is an exciting field of research, as it is rich 
in both experimental and computational challenges and 
has the potential for genuinely collaborative research.

Recently there have been important and exciting 
advances in our understanding of stem cell fate specifi­
cation and cellular reprogramming. However, we still 
know little about these intrinsically complex processes at 
the systems level. We hope that an integrated approach, 
in which experimental approaches provide the informa­
tion that forms the theory and computational modelling 
refines experimental approaches, will help us to better 
understand the molecular basis of stem cell fate decision 
making and cellular reprogramming.
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