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Most phenotypes are genetically complex, with contributions from mutations in many different genes. Mutations in more
than one gene can combine synergistically to cause phenotypic change, and systematic studies in model organisms show
that these genetic interactions are pervasive. However, in human association studies such nonadditive genetic interactions
are very difficult to identify because of a lack of statistical power—simply put, the number of potential interactions is too
vast. One approach to resolve this is to predict candidate modifier interactions between loci, and then to specifically test
these for associations with the phenotype. Here, we describe a general method for predicting genetic interactions based on
the use of integrated functional gene networks. We show that in both Saccharomyces cerevisiae and Caenorhabditis elegans
a single high-coverage, high-quality functional network can successfully predict genetic modifiers for the majority of
genes. For C. elegans we also describe the construction of a new, improved, and expanded functional network, WormNet 2.
Using this network we demonstrate how it is possible to rapidly expand the number of modifier loci known for a gene,
predicting and validating new genetic interactions for each of three signal transduction genes. We propose that this
approach, termed network-guided modifier screening, provides a general strategy for predicting genetic interactions. This
work thus suggests that a high-quality integrated human gene network will provide a powerful resource for modifier locus
discovery in many different diseases.

[Supplemental material is available online at http://www.genome.org.]

Most diseases in humans are known to be genetically complex,

resulting from mutations in many different genes (Bonetta 2008).

In model organisms, systematic studies have shown that for nearly

all traits studied, the traits are not only affected by multiple genes,

but also by nonadditive interactions between mutations in these

genes (Flint and Mackay 2009). Combined with the results of syn-

thetic lethal screens (Boone et al. 2007; Lehner 2007), this shows

that nonadditive (epistatic) interactions between mutations are per-

vasive in biology. For essentially all phenotypes (Flint and Mackay

2009) and nearly all genes (Tong et al. 2004) the outcomes of mu-

tations are affected by the alleles carried by an organism at other

genomic loci. These synthetic interactions between mutations have

been suggested as one explanation for why genome-wide associa-

tion studies have failed to identify loci that explain more than a

minority of the known genetic contribution to most common dis-

eases in humans (Maher 2008; Flint and Mackay 2009).

With the aim of understanding how mutations combine to

cause disease, large-scale genetic interaction screens have been

performed in model organisms (Tong et al. 2004; Schuldiner et al.

2005; Lehner et al. 2006a; Pan et al. 2006; Byrne et al. 2007; Collins

et al. 2007; Lin et al. 2008). In these screens, pairs of genes are sys-

tematically inhibited and the effects on viability phenotypes as-

sayed (for review, see Boone et al. 2007; Lehner 2007). These screens

have highlighted the enormous extent to which mutations in one

gene alter the phenotypic outcome of mutations in a second locus.

Furthermore, the data from these screens show that most genetic

interactions do not represent simple cases of ‘‘redundancy’’ between

genes encoding similar biochemical functions (Tong et al. 2004;

Wong et al. 2004; Kelley and Ideker 2005; Ulitsky and Shamir 2007).

Interactions between mutations are extremely difficult to iden-

tify in human population studies. This is because of the large num-

ber of statistical tests required to identify interactions between pairs

of alleles, limited disease population sizes, and the low frequency

at which any particular combination of alleles is present in a pop-

ulation (Hartman et al. 2001; Flint and Mackay 2009). This makes

identifying modifier loci in human disease a very challenging pros-

pect, and, indeed, only a few such loci are known (Bochdanovits

et al. 2008; Flint and Mackay 2009; Mackay et al. 2009).

An alternative approach to identify interactions between

mutations would be to first predict them and then to validate these

predictions in population studies. This would reduce the number

of tests being performed, therefore increasing power to detect in-

teractions. Analysis of genetic interaction data from model organ-

isms has shown that genes that participate in common biological

processes often show similar patterns of genetic interactions (Tong

et al. 2004; Kelley and Ideker 2005; Ye et al. 2005; Ulitsky and

Shamir 2007). This means that genetic interactions can, in part, be
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predicted using physical interaction data to identify proteins that

act in common functional pathways (Wong et al. 2004; Le Meur

and Gentleman 2008).

In biology, however, functional relationships among proteins

often transcend direct physical interactions (Fraser and Marcotte

2004). Many proteins can be important for common biologi-

cal processes without physically interacting or associating. For

example, proteins functioning in the same biosynthesis pathway,

but at different biochemical steps, may never physically contact

each other but are functionally associated because they act in the

same biological process. This insight led to the concept of ‘‘func-

tional gene networks’’ (Marcotte et al. 1999). In these networks

genes are coupled if they are predicted to participate in a common

biological process. Further, the strength of interaction between any

two genes indicates the confidence in the functional coupling

between the two genes (Troyanskaya et al. 2003; Lee et al. 2004;

Rhodes et al. 2005; Jensen et al. 2009).

Many different types of biological data can be used to predict

functional interactions between genes. Indeed, this is an impor-

tant advantage of the approach, as it provides a generic framework

for integrating disparate data types into a common predictive net-

work. To date, functional networks have been constructed for

organisms ranging from unicellular yeast (Mellor et al. 2002;

Troyanskaya et al. 2003; Karaoz et al. 2004; Lee et al. 2004, 2007;

Tian et al. 2008), through invertebrate model organisms (Gunsalus

et al. 2005; Lee et al. 2008), to mammals (Rhodes et al. 2005; Guan

et al. 2008; Kim et al. 2008; Peña-Castillo et al. 2008; Linghu et al.

2009).

These studies have demonstrated that a single functional

network can be used to predict gene loss-of-function phenotypes

across a majority of genes in an organism (McGary et al. 2007; Lee

et al. 2008; Linghu et al. 2009). These networks successfully predict

loss-of-function phenotypes, because genes that act in a common

process tend to cause similar phenotypic effects when they are

mutated, as has been known for many years in genetics and has

been quantitatively confirmed for gene networks (Fraser and

Plotkin 2007; Hart et al. 2007; Lage et al. 2007; Lee et al. 2008).

Thus, given knowledge of a few genes associated with a process or

phenotype of interest, it is possible to successfully predict more

genes that will alter this process or phenotype when inhibited. We

also observed, for a few tested cases, that a functional network was

also predictive for genetic modifiers of a mutation (Lee et al. 2008).

In this study, we have expanded and tested the general validity

of the approach of using functional networks for predicting specific

genetic modifiers. First, we describe the construction of a new and

improved functional network for the model animal Caenorhabditis

elegans. This network has both higher coverage and greater predictive

power for single gene loss-of-function phenotypes than our first

generation network. We then show that this network is also highly

predictive for identifying interactions between mutations, consider-

ing all previously identified systematic interaction datasets. Indeed,

the network is similarly predictive for identifying genetic interac-

tions as for single gene loss-of-function phenotypes. Moreover, we

demonstrate the advantage over purely physical interaction net-

works. We further validate the approach in yeast, the organism for

which most genetic and functional data is currently available. Fi-

nally, we demonstrate how it is possible to rapidly expand the set

of modifier loci known for a mutation using the examples of three

signal transduction genes. Taken together, our work proposes that

a single, high-quality functional network for human genes will

provide a powerful resource for predicting modifier genes in hu-

man disease.

Results

WormNet version 2: An extended functional network
for C. elegans

To test the ability of functional networks to predict interactions

between different genes, we first constructed an improved and

expanded functional network for the animal C. elegans. Currently,

C. elegans is the only animal in which genetic interactions have

been systematically identified in vivo (Lehner et al. 2006a; Byrne

et al. 2007) and so it provides the best animal system in which to

test the predictive power of integrated networks. Our new network

incorporates many improvements compared with our first gener-

ation network (see Methods and Supplemental Table S1) and ex-

tends the number of functional couplings between genes over

2.5-fold to 999,367 links covering 15,139 genes (75.5% of 20,081

protein-encoding genes).

Important improvements derive from multiple sources (Sup-

plemental material and Supplemental Table S1). These include the

more stringent treatment of coexpression datasets, the incorpo-

ration of information from other organisms as individual rather

than preintegrated data, and the addition of many new and ex-

panded datasets (see Methods). These additional data types include

linkages derived from protein domain co-occurrence patterns,

linkages based on mRNA coexpression relationships of human

orthologs (I Lee, M Blom, PI Wang, J Shim, and EM Marcotte, in

prep.), and additional human protein interaction data (Kim et al.

2005; Stelzl et al. 2005; Ewing et al. 2007). In total, 21 data sets

(Supplemental Table S2) from four different species (yeast, fly, worm,

and human) were integrated to achieve a high-coverage, high-

accuracy network model (Fig. 1A). About 58% of links modeled

by the previous network are recapitulated by the new network

(Fig. 1B).

WormNet 2 provides improved predictive power
for loss-of-function phenotypes

To evaluate the predictive power of the new network we used

a compilation of data from genome-wide RNAi screens covering

43 different loss-of-function phenotypes as listed in Supplemental

Table S3. These phenotypes range from defects in cellular processes

to gross morphological phenotypes and physiological processes

such as aging. The phenotype datasets are independent of any data

used to construct either versions of our network and so provide

a common benchmarking set to compare the performance of both

networks. We evaluated predictability of the networks for each

phenotype by receiver operating characteristic (ROC) curve anal-

ysis as described in Methods. This method provides a measure of

the recovery of true-positive genes (those known to be associated

with a phenotype) compared with false-positive genes (others)

when all genes are ranked by their network connections to the

known phenotypic genes.

Example ROC curves for two phenotypes (PTEN synthetic

lethality and ruptured) for WormNet versions 1 and 2 are illus-

trated in Figure 1C. For both phenotypes the newer version of

WormNet shows improved ROC curve performance. These ROC

curve behaviors can be summarized as a simple score, the area

under the ROC curve (AUC), which would be close to 0.5 for

a random network, and approaching 1 for a perfect predictor.

As shown in Figure 1D, for nearly all phenotypes the predictive

power of the new version of WormNet is greater than that of

the old version (P = 3 3 10�4, Wilcoxon signed rank test, unless

noted otherwise). This improvement stems from links that are
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derived from heterogeneous data types and species (Fig. 1D). We

conclude that WormNet 2 has increased predictability for loss-

of-function phenotypes compared with the previous network

model.

We extended the comparison of predictability to other

large-scale gene networks including STRING and FunCoup (Sup-

plemental Fig. 1). The STRING version 8.2 (Jensen et al. 2009)

network includes 150,462 linkages among 8570 genes (42.7%),

and FunCoup version 1 (Alexeyenko and Sonnhammer 2009) in-

cludes 1,868,676 linkages among 13,415 genes (66.8%). WormNet

v. 2 shows a comparable or higher combination of predictability

(measured as AUC) and phenotypic gene coverage than other

networks, including WormNet v. 1. More than 50% of RNAi phe-

notypes (22/43) were best predicted by WormNet v. 2.

Figure 1. Improved performance of the updated gene network for C. elegans, WormNet version 2. (A) Benchmarking results of network by each 21 data
sets and one by their integration (WormNet). Each data set is indicated by XX-YY code, in which XX represents origin species of data—CE, C. elegans; DM,
Drosophila melanogaster, HS, Homo sapiens, SC, Saccharomyces cerevisiae—and YY represents data type—CC, cocitation; CX, coexpression; GN, gene
neighbors; GT, genetic interaction; LC, literature curated protein–protein interaction; PG, phylogenetic profiling; YH, high-throughput yeast two-hybrid
interaction; PI, protein interaction; DC, domain co-occurrence; MS, mass spectrometry analysis; TS, inferred interaction from protein tertiary structure.
The x-axis represents coverage of 20,081 protein-coding worm genes by different components of WormNet version 2 (log scaled); the y-axis represents
predictive performance of the network and components, measured as the cumulative log likelihood for linked genes to participate in same Gene Ontology
biological process. (B) Venn diagram between old and new WormNet linkages. The new WormNet more than doubles the number of linkages, with >57%
(220,736 of 384,700) of the WormNet v.1 linkages recapitulated in v.2. (C ) Improved predictability for RNAi phenotypes by WormNet v.2 is illustrated by
ROC curve analysis for two RNAi phenotypes. A version of WormNet omitting literature-based genetic interaction datasets (CE-CC and CE-GT) was used
for all ROC analyses in Figures 1–4, to minimize the possibility of circular reasoning when predicting published genetic interactions. (D) The improved
predictability of WormNet v.2 (red bars) over v.1 (black bars) is illustrated by a comparison of AUC scores for 43 different RNAi phenotypes. For each RNAi
phenotype (rows), the supporting power of each data set (columns, labeled as in A) to the prediction was measured as a fractional score—the sum of log
likelihood scores of all supporting evidence for that data set divided by the sum of log likelihood scores across all data sets. The degree of contribution is
indicated by grayscale, where the higher support the darker indicator. Various data sets including those from other species make significant contribution
for predictability for worm RNAi phenotypes.

Network-guided genetic modifier screening
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Predicting genetic interactions in C. elegans using
a functional network

The example ROC curve shown in Figure 1C for PTEN synthetic

lethality suggests that a functional network may also provide

a general method for predicting interactions between mutations in

addition to single gene loss-of-function phenotypes. That is, given

a few genes that are known to interact genetically with a mutation,

it may be possible to identify new modifier loci by their functional

coupling to these known ‘‘seed’’ genes (Fig. 2A).

In C. elegans genetic interactions between mutations have

been systematically identified in two large-scale interaction screens

(Lehner et al. 2006a; Byrne et al. 2007). In each screen, modifier loci

that enhance the effects of a mutation in one gene were identified

using RNAi to inhibit the expression of other genes. In a few cases,

RNAi was used to inhibit two genes simultaneously.

We used the same ROC AUC analysis to assess the ability of

WormNet 2 to predict these genetic interactions between loci. As

shown in Figure 2B, we observe a high AUC for the modifier genes

identified in nearly all of the screens. Indeed, the network is sim-

ilarly predictive for identifying modifier loci (Fig. 2B) as it is for

identifying single gene loss-of-function phenotypes (Fig. 1D). We

conclude that genetic interactions can be predicted with similar

performance as loss-of-function phenotypes.

Predicting genetic interactions in yeast

To further assess the generality of our approach, we tested whether

a functional network could predict genetic interactions in a second

organism. We focused on the budding yeast Saccharomcyes cer-

evisiae because it is the species for which the most genetic in-

teractions have been systematically identified (Boone et al. 2007)

and also the organism for which the highest coverage functional

gene networks are currently available (Lee et al. 2007; Myers and

Troyanskaya 2007; Tian et al. 2008). We considered two large-scale

genetic interaction screens: one testing for interactions with

nonessential genes (Tong et al. 2004) and

the other with essential loci (Davierwala

et al. 2005). As a functional network, we

used YeastNet version 2 (Lee et al. 2007),

which is similar in construction to the C.

elegans network described in this work.

As for C. elegans, we observed high

AUC scores for the majority of interaction

screens, both for nonessential and es-

sential genes (Fig. 2C). We conclude that

a single integrated functional network

can successfully predict modifier loci in

both unicellular and multicellular organ-

isms. Interestingly, we note that the pre-

dictive power of genetic interactions with

nonessential genes is higher than for es-

sential genes (Fig. 2C). Essential genes are

probably required for buffering many

cellular processes (Davierwala et al. 2005),

while nonessential genes, in general,

function as specific modifiers for a few

pathways (Lehner et al. 2006a). Thus, the

differences in predictive power for these

two gene classes may represent a general

dichotomy between two types of genetic

modifiers—general buffers and specific

modifiers (Lehner et al. 2006a), with in-

teractions for specific modifiers being

more straightforward to predict using

functional networks.

Functional networks are more
predictive than current protein
interaction networks

Previous work has shown that it is possi-

ble to predict genetic interactions using

physical protein–protein interaction net-

works (Tong et al. 2004; Wong et al. 2004;

Kelley and Ideker 2005; Le Meur and

Gentleman 2008). We therefore asked

whether using functional interactions—

which extend beyond physical inter-

actions—improves the predictive power

of a network.

Figure 2. Network-guided prediction of genetic modifiers. (A) A schematic figure of network-guided
prediction of genetic modifiers. Assuming there are some known disease gene modifiers (yellow nodes)
for a disease gene (red node), we can predict additional candidate genetic modifiers (green nodes)
connecting to known genetic modifiers in the functional gene network, because genes with similar
functions tend to share genetic interaction partners (here, the disease gene). (B) AUC of known genetic
modifiers for worm genes from two independent screens. The majority of groups of congruent genes
show high AUC score (e.g., AUC > 0.6). AUC for random expectation (AUC = 0.5) is indicated by red line.
(C ) AUC of known synthetic lethal partners for yeast genes, from two independent studies—one for
nonessential genes and the other for essential genes. These also show high predictability, indicated by
high AUC scores for the majority of groups (red line for AUC = 0.5). (D) Predictability for synthetic lethal
partners for yeast nonessential genes or essential genes by protein–protein interaction or functional
gene network. In bar-and-whiskers plots, the central horizontal line in the box indicates the median
AUC, and the boundaries of the box indicate the first and third quartiles of the AUC distribution, whiskers
indicate the 10th and 90th percentiles, and filled circles indicate individual outliers. (E ) Same analysis as
D for genetic modifiers of worm orthologs of human disease genes. (F ) Comparison of predictability
between two different versions of WormNet.
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In yeast, in addition to the numerous small- or medium-scale

protein–protein interaction studies, multiple genome-wide screens

have been performed for protein–protein interactions. As a con-

sequence, a consolidated yeast protein–protein interaction net-

work is expected to be fairly complete. We constructed a yeast

protein interaction network by consolidating protein–protein in-

teractions derived from various sources (Supplemental Table S4).

The resulting interactome covers 5275 yeast genes (91% of pre-

dicted coding genes) with 65,033 interactions. We compared the

prediction power of this high coverage protein interactome with

that of the functional gene network (YeastNet version 2; Lee et al.

2007) using the data from two large-scale genetic interaction

screens (Tong et al. 2004; Davierwala et al. 2005). For both data-

sets YeastNet 2 is more predictive than the physical interactome

(P = 7 3 10�14 for Tong et al. 2004; P = 2 3 10�7 for Davierwala

et al. 2005) (Fig. 2D), suggesting that even for an organism

with a very extensive physical interaction data set, consider-

ing nonphysical functional interactions enhances predictive

performance.

In C. elegans we observed an even greater benefit of using

a functional network compared with a physical network. The

current physical interactome for C. elegans—Worm Interactome

version 8 (WI8) (Simonis et al. 2009) covers only 15% of pro-

tein-coding genes with 4402 interactions. With this limited cov-

erage, most pathways are out of view, and consequently, most

genetic modifier groups show an AUC < 0.55 (Fig. 2E). In contrast,

WormNet version 2 covers >75% of genes and achieves a median

AUC > 0.7 for genetic modifiers identified in both large-scale

studies. We conclude that functional networks can provide better

predictive performance for genetic modifiers than protein-inter-

action networks, particularly for species with less complete

physical interactomes.

WormNet version 2 has improved predictive power
for genetic modifiers

Next we tested whether the updated functional gene network for

C. elegans improves predictability for known genetic modifiers

compared with the previous version (Lee et al. 2008). We observed

improvements of the AUC scores for most of the groups of genetic

interaction partners (P = 5 3 10�5 for Lehner et al. 2006a; P = 4 3

10�3 for Byrne et al. 2007) (Fig. 2F). Together with the results for

the 43 single gene loss-of-function phenotypes (Fig. 1C,D), we

conclude that WormNet version 2 is improved in its general pre-

dictive power. We expect that as new datasets become available we

will be able to further improve this predictive power as the network

model is updated.

Data from diverse sources is used to predict genetic modifiers

We found that the high predictability of WormNet 2 does not

depend on only a few dominant types of data. Rather, most of the

data types integrated into the final gene network contribute to the

predictions (Fig. 3A,B). This shows that data integration was crucial

to achieve the high predictive performance of the network model.

The ability to predict novel genetic modifiers depends on the con-

nectivity among known genetic modifiers. Therefore, we might

expect a correlation between the number of known genetic mod-

ifiers and predictability. However, this correlation is low (Fig. 3C),

suggesting that the number of known interaction partners does

not strongly affect prediction power, provided there are sufficient

known cases to seed the prediction.

It is noteworthy that of the functional gene linkage infor-

mation derived from other species, the majority comes from yeast

orthologs. In Figure 3, A and B, yeast data account for 33% of

predictability for the Lehner et al. (2006a) data set, while human

Figure 3. High predictive power for genetic modifiers stems from a wide variety of data types integrated into WormNet. Both independent screens for
genetic modifier for worm orthologs of human disease genes by Lehner et al. (2006a) (A) and by Byrne et al. (2007) (B) shows that groups or genetic
modifiers (labeled by sharing genetic interaction partner disease gene names at y-axis) with high AUC scores (random expectation is indicated by red line
where AUC = 0.5) are supported by contribution (degree of contribution is measured and indicated as in Fig. 1D) of diverse data types (listed at x-axis with
same code scheme as Fig. 1A). (C ) Predictability does not depend on seed set size, seen by a low correlation between the number of known genetic
modifiers (number of seed genes) and predictability (indicated by AUC).

Network-guided genetic modifier screening
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and fly data account for 21% and 6.7%, respectively (compared

with 39% from worm). For the Byrne et al. (2007) interactions,

yeast data account for 22%, human 19%, and fly 6.4% of pre-

dictability (compared with 52.7% from worm). It has been shown

previously that genetic interactions are relatively poorly conserved

between species (Dixon et al. 2008; Roguev et al. 2008; Tischler

et al. 2008), which might suggest that genetic interactions could

not be easily predicted using cross-species data. This is not what we

find, since yeast data make large contributions to the predictability

of genetic interactions in the worm. While individual genetic in-

teractions themselves may be poorly conserved, functional mod-

ules and pathways do tend to be highly conserved between species,

and this means that functional couplings derived from one species

can be highly predictive of genetic interactions in another species

with the method proposed here (Fig. 2). Thus, functional genomic

datasets from yeast and other model organisms—including genetic

interaction screens—can be highly informative for predicting

modifier loci in higher organisms, including humans.

Network-guided modifier screening: Verifying new
interactions for three signaling genes

Based on our analysis of existing genetic interaction data in worms

and yeast, we propose a general strategy for discovering disease

gene modifiers using integrated functional networks. Starting with

a small number of known modifiers, a functional network can be

used to predict new candidate modifiers. These candidates can

then be experimentally validated in a cost-effective and statisti-

cally powerful way (Fig. 2A).

To illustrate this approach, we used the network to predict

new genetic modifiers for three signal transduction genes in

C. elegans and tested these predictions experimentally. Previously,

we performed focused screens testing the effects of inhibiting ;8%

of C. elegans genes on the phenotypic outcome of these three mu-

tations. These ;8% of genes were chosen because of their predicted

functions in signaling, transcription regulation, or chromatin re-

modeling, which was designed to increase the recovery of inter-

actions in the screen. We used the modifiers identified in each of

these previous screens as seed genes in WormNet 2, ranking all

genes by their functional coupling to these genes (Fig. 2A).

The genes that we considered encode an ephrin receptor (vab-1)

and the son-of-sevenless (sos-1) and ACK kinase (ark-1) orthologs

that function in growth-factor receptor/MAP kinase signaling. For

each gene, we tested approximately 90 additional loci ranked as

most closely functionally coupled to the previously identified

modifiers, focusing only on genes that had not been tested in the

previous screen (Lehner et al. 2006a) and for which RNAi clones

were available in the Ahringer feeding library (Kamath et al. 2003).

In total we identified 31 novel modifier interactions (11%

of tested genes). This represents a 7.3-fold enrichment compared

with our previous focused screens (P = 8 3 10�16, Fisher’s exact test).

For the individual genes, the validation rates were: 4% (ark-1), 14%

(sos-1), and 15% (vab-1), all significantly enriched compared with

the previous screens (1%, 1%, and 2.4%, respectively, P < 0.05 in all

cases). In Figure 4, we list the new and previously identified modi-

fiers of each mutation together with the functional couplings that

connect them in WormNet 2. Example interactions are illustrated in

Figure 5. It can be seen that the functional couplings derive from

multiple data types and multiple species, clearly demonstrating the

benefits of data integration. Together with the analysis of previous

screens, we conclude from this that integrated networks provide

a powerful method for predicting genetic modifiers in animals.

Discussion

Functional networks provide a general strategy for predicting
genetic modifier loci

We have demonstrated here that integrated, functional net-

works provide a general method for predicting genetic modifier

loci in both unicellular and multicellular organisms. The basis

for this is the principle that genes that act in a common path-

way or processes generally act as modifier loci for the same

mutations.

Our method extends beyond previous work that has used

physical interaction networks to predict genetic interactions

(Wong et al. 2004; Kelley and Ideker 2005; Le Meur and Gentleman

2008) and we demonstrated that considering functional inter-

actions offers improved predictive power. Two reasons for this are

the integration of many more diverse datasets and the fact that

functional couplings transcend physical interactions. Our method

also differs from previous efforts to predict genetic interactions by

training a network on known genetic interactions (Zhong and

Sternberg 2006) or inferring new interactions from large datasets

of genetic interactions (Qi et al. 2008). Such approaches would

be very difficult in higher organisms given the very small number

of previously identified interactions (Flint and Mackay 2009). In

contrast, human functional networks can be constructed using

existing data, meaning that it will be possible to easily extend our

approach to our own species.

The main caveat of our method is that it requires knowledge

of a set of ‘‘seed’’ genes that are known to modify any mutation of

interest. These seed genes may be identified from previous knowl-

edge, an unbiased screen, or from testing candidate genes.

Network-guided modifier screening

In yeast and C. elegans, genetic interaction screens are quite

straightforward. However, given the enormous number of gene

pair combinations that need to be tested, they are still highly labor

intensive. For example, the two largest studies to date in these

species tested only ;3% and <0.02% of possible interactions (Tong

et al. 2004; Lehner et al. 2006a).

Our method offers an alternative approach. We showed how

it is possible to first screen a subset of the genome, and then to use

the interactions identified in this first screen to predict more in-

teractions with genes in the rest of the genome. Using interactions

derived from screening ;8% of the genome with three mutations

in signal transduction genes, and testing approximately 90 pre-

dicted interactions for each gene, we were able to identify a total

of 31 new genetic modifiers. Thus, we achieved a four- to 12-fold

enhancement of interaction discovery compared with our pre-

vious screens.

A new improved functional gene network for C. elegans

The accuracy and coverage of a network model is critical for its

predictability. To increase predictability we improved and ex-

tended an earlier version of a functional gene network for C. ele-

gans (Lee et al. 2008) by incorporating a large number of modifi-

cations and new datasets as summarized in Supplemental Table S1.

We found that the updated network, WormNet version 2, signifi-

cantly improves not only prediction of loss-of-function pheno-

types (Fig. 1C,D) but also prediction of genetic modifiers (Fig. 2F).

This new network can be accessed through a web interface (http://

www.functionalnet.org/wormnet). Using this interface, researchers
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can easily search the network using a set of ‘‘seed’’ genes of in-

terest. The interface returns a list of genes ranked according to

their connections to the seed genes together with the evidence

used to identify each coupling. The interactions and evidence

can be downloaded, and a network visualization tool has been

incorporated.

A general strategy for predicting genetic modifier loci
in human disease

The success of our approach suggests that a similar strategy should

also work for identifying modifier loci in humans. Most diseases in

humans are known to be genetically complex, but systematically

identifying interactions between mutations in population studies

is extremely difficult because of a lack of statistical power. Our re-

sults suggest an alternative approach: Starting from a small seed set

of interactions, an integrated functional network can be used to

predict more candidate modifier loci. For example, a few modifier

loci might be known from previous studies or a genome-wide as-

sociation study. Using this set and an integrated network, new

modifiers could be predicted. These candidates could then be

verified in a population study, which would obtain much greater

statistical power because of the smaller number of genes being

considered.

Concluding remarks

In summary, the approach outlined here provides a general

method for predicting genetic modifier loci. This will be useful in

experimental model organisms, but also in species of clinical or

Figure 4. Predicting and validating novel genetic modifiers for three signaling genes in C. elegans. New candidate genetic modifiers were predicted for
mutations in three signal transduction genes by ranking all genes in the genome by their functional coupling to the known genetic modifiers for each gene
as shown schematically in Figure 2A. The top ranked approximately 90 genes that had not been previously tested for their ability to interact were then
tested. (A) Cross-validated ROC curves for each of the three genes’ previously known genetic modifiers. AUCs are indicated after each gene name in key.
(B–D) Previously known (yellow nodes) and newly verified (green nodes) genetic modifiers of mutations in vab-1 (B), sos-1 (C ), and ark-1 (D) are plotted as
networks, showing the high network connectivity among the genes that led to their prediction as genetic modifiers. Edges show WormNet 2 predicted
functional couplings between the modifier loci, derived from evidence in C. elegans (green edges), D. melanogaster (orange edges), S. cerevisiae (blue
edges), and H. sapiens (purple edges). Physical interaction evidence is shown as thick lines, cocitation evidence as dashed lines, and all other evidence as
solid lines. Gene networks were plotted using Cytoscape 2.5.2. (Cline et al. 2007).
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agricultural importance. Indeed, our results suggest that a single

high-quality functional network for humans will provide a pow-

erful resource for the systematic identification of modifier loci in

multiple genetic diseases.

Methods

Caenorhabditis elegans gene annotation reference sets
and network integration
WormNet version 2 is based on the 20,081 C. elegans protein-
coding genes annotated by WormBase 170 (downloaded from the
WormBase ftp site in January 2007) (Uren et al. 2008). All linkages
and calculations of genome coverage are based on this gene set. A
reference set for gene functional associations was assembled from
gene pairs sharing any Gene Ontology (GO) biological process an-
notations (downloaded from WormBase ftp site in January 2007).
We excluded the following annotations: (1) seven overdominant
terms—embryonic development (sensu Metazoa) (GO no. 0009792),
larval development (sensu Nematoda) (GO no. 0002119), positive
regulation of growth rate (GO no. 0040010), locomotory behavior
(GO no. 0007626), regulation of transcription, DNA dependent (GO
no. 0006355), gametogenesis (GO no. 0007276), transport (GO no.
0006810)—and three terms about general post-translational modi-
fication that labeled highly diverse pathways—G-protein coupled
receptor protein signaling pathway (GO no. 0007186), protein
amino acid phosphorylation (GO no. 0006468), protein amino acid
dephosphorylation (GO no. 0006470). If not excluded, these 10
terms would account for 90% of the total positive training gene
pairs. (2) All terms at the first level in the GO hierarchy (taking the
parental term ‘‘biological process’’ as level zero)—growth (GO no.
0040007), reproduction (GO no. 0000003), metabolic process (GO
no. 0008152), locomotion (GO no. 0040011), localization (GO no.
0051179). The resulting set of reference gene annotations con-
tained 626,342 pairs covering 5178 C. elegans genes (;25.8% of
20,081 WormBase170 genes encoding proteins).

Functional associations were calculated using the log likeli-
hood scoring (LLS) scheme:

LLS = ln
P LjEð Þ=P :LjEð Þ

P Lð Þ=P :Lð Þ

� �
;

where P(L|E) and P(:L|E) are the frequencies of gold standard
linkages (L) observed in the given experiment (E) between anno-
tated C. elegans genes operating in the same pathway (indicated by
L, positive instances) and in different pathways (indicated by :L,
negative instances), respectively, while P(L) and P(:L) represent
the prior expectations (i.e., the total frequency of linkages between
all annotated C. elegans genes operating in the same pathway and
operating in different pathways, respectively). To avoid circular
training and monitor overtraining, we used 0.632 bootstrapping
constructs training sets from data sampled with replacement and
test sets from the remaining data that weren’t sampled from the
original training set. Each linkage has a probability of 1 � 1/n of
not being sampled, resulting in ;63.2% of the original training
data in the training set and ;36.8% in the test set. The overall LLS
is the weighted average of results on the two sets, equal to 0.632 3

LLStest + (1 � 0.632) 3 LLStrain. Log likelihood scores from each
contributing data set were integrated using the weighted sum (WS)
method.

WS = L0 + +
n

i = 1

Li

D 3 i
; for all L $ T;

where L0 is the best LLS score among all LLSs for that gene pair, D is
a free parameter for the overall degree of dependence among the
data sets, T is a LLS threshold for all data sets being integrated, and
i is the order index of the data sets after rank-ordering LLS scores
according to descending magnitude. The values of two free pa-
rameters (D and T) are systematically chosen to maximize overall
performance (LLS and gene coverage) on the benchmark.

Inferring functional associations from C. elegans transcript
expression data

mRNA coexpression associations were inferred from public DNA
microarray datasets as described in Lee et al. (2004) (referred to as
data set CE-CX) using data listed in Supplemental Table S5 with the
following modification: For WormNet version 2, we removed gene
pairs likely to cross-hybridize to each other’s DNA microarray
probes based on observing significant DNA sequence homology,
defined by a BLASTN E-value # 10�4 and nucleotide sequence
identity $70%, as established by Ramani et al. (2008). We in-
tegrated log likelihood scores from distinct sets of microarray ex-
periments using the weighted sum method described above.

Functional associations inferred from physical
and genetic interactions

WormNet version 2 incorporates physical protein interaction
datasets from high and medium-throughput yeast two-hybrid
analyses of C. elegans genes (CE-YH) reported in the Worm Inter-
actome Version 5 (WI5) (Li et al. 2004). We treated subsets of the
WI5 (literature, scaffold, core1, core2, noncore) separately, pro-
viding different confidence scores for the different data subsets,
rather than a single averaged confidence score across all in-
teractions of the set. The WI5 literature-curated subset was com-
bined with literature-based protein physical interactions from
BIND (Alfarano et al. 2005), IntAct (Kerrien et al. 2007), and MINT
(Chatr-aryamontri et al. 2007) to construct the literature-curated
protein physical interaction set (CE-LC). Genetic interactions (CE-
GT) (;2200 interactions among ;1000 genes) were included from

Figure 5. Examples of novel genetic modifier interactions in C. elegans.
Here, the phenotypic consequences of inhibiting each of two genes ada-2
and apa-2 in wild-type (Bristol N2) and vab-1(e699) mutant animals are
compared. In wild-type worms, inhibiting either of these genes produces
minimal phenotypic change. In the images, adult worms can be observed
together with their larval progeny. In contrast, in vab-1(e699) mutants, ada-
2(RNAi) and apa-2(RNAi) produce embryonic lethality (example clusters of
unhatched embryos are marked by arrowheads), a reduced brood size, and
for apa-2(RNAi) delayed growth of the first generation worms.
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WormBase170 (Uren et al. 2008) derived from more than 1000
primary publications. Additional linkages were identified based
upon cocitation of gene names in Medline abstracts downloaded
on December 2004). We analyzed a set of n = 7732 Medline
abstracts that included the word ‘‘elegans’’ in the abstract for per-
fect matches to either the systematic names or common names of
20,081 genes of C. elegans, scoring gene pairs according to the
scheme of Lee et al. (2004) (CE-CC). We excluded all previously
predicted genetic interactions (Zhong and Sternberg 2006) as well
as those from two genome-scale screens (Lehner et al. 2006a; Byrne
et al. 2007).

Inferring functional associations from phylogenetic profiles
and genomic context

To discover functional associations between genes on the basis of
the genomic context of orthologs of C. elegans genes, we used the
phylogenetic profile method (Pellegrini et al. 1999; Huynen et al.
2000; Wolf et al. 2001) and the gene neighbors method (Dandekar
et al. 1998; Overbeek et al. 1999; Bowers et al. 2004). For both
methods, we analyzed 424 bacterial genome sequences (31 archeae-
bacteria and 393 eubacteria, downloaded from NCBI in December
2006). C. elegans protein sequences were aligned to protein se-
quences encoded by the 424 bacterial genomes, using the program
BLASTP with default settings (Altschul et al. 1997) and alignment
scores analyzed as in Date and Marcotte (2003) with the modifi-
cation of using discretized BLASTP E-values when calculating
mutual information between phylogenetic profiles. We used bins
of equal numbers of E-values rather than equal intervals of E-values,
accounting for the nonuniform E-value distribution. We bench-
marked linkages inferred from three subsets of the genomes—the
complete set of 424 genomes, the set of 311 genomes representing
unique species, and the set of 181 genomes representing unique
genuses, selecting the representative species or genus with the
maximum number of BLASTP hits to C. elegans proteins. Using
recall/precision analysis, we found that the 181 genome set maxi-
mized performance for the gene neighbor method (CE-GN) and the
424 genome set performed best for the phylogenetic profiling
method (CE-PG). We further limited the phylogenetic profile anal-
ysis to C. elegans proteins with fewer than 19 InterPro domains
(Hunter et al. 2009), which performed considerably better as mea-
sured by recall-precision analysis, due to a tendency for larger pro-
teins to show promiscuous functional associations arising from
misestimated coinheritance patterns. Log likelihood scores were
assigned as described above.

Inferring gene functional associations using associalogs

In addition to C. elegans data, we also analyzed datasets collected
for yeast, fly, and human. Linkages between C. elegans gene pairs
were identified based on the data associated with the orthologs of
the C. elegans genes (‘‘associalogs’’) (Lee et al. 2008). A total of 14
linkage sets were analyzed based on datasets previously incor-
porated into gene networks for yeast (seven sets from YeastNet;
Lee et al. 2007), human (six sets from HumanNet; I Lee, M Blom, PI
Wang, J Shim, and EM Marcotte, in prep.), and fly (fly protein–
protein interactions derived from BIOGRID [Breitkreutz et al.
2008], IntAct [Kerrien et al. 2007], and MINT [Chatr-aryamontri
et al. 2007], downloaded in March 2007) and summarized in
Supplemental Table S2. Orthologs were defined between C. elegans
proteins and other organisms using Inparanoid (Remm et al. 2001).
Transferred linkages were weighted by Inparanoid-assigned confi-
dence scores in the orthology assignments using the following
scheme: We defined an Inparanoid weighted log likelihood score
(IWLLS) equal to the LLS from the network of origin + log(Inpara-

noid score for gene A) + log(Inparanoid score for gene B). C. elegans
gene pairs were ranked by the IWLLS scores, then log likelihood
scores calculated using the C. elegans reference annotation set, as
for C. elegans datasets.

ROC analysis of predictability of genetic
modifier identification

A network’s predictive power for inferring loss-of-function phe-
notypes or genetic modifiers was tested using leave-one-out cross-
validation on known phenotypic genes or known genetic modi-
fiers (termed ‘‘seed’’ genes) by scoring all genes in the genome by
each gene’s associated sum of LLS scores to the seed genes, omitting
each seed gene in turn from the seed set for purposes of its own
evaluation. A ROC curve was calculated by plotting the true-positive
rate (TP/[TP + FN]) versus false-positive rate (FP/[FP + TN]) for all
genes scored above a sliding score threshold. (A set of equally
scoring genes is thus evaluated as a single step in the ROC plot.)
Seed genes (positives) well connected to one another will thus
score higher than nonseed genes (negatives), resulting in a ROC
curve above the diagonal. Each ROC analysis was summarized by
the AUC, where AUC = 0.5 is expected for a random predictor and
AUC = 1 for a perfect predictor, arising in the case of all of the seed
genes being tightly interconnected in the network.

Predicting new modifier loci for signal transduction genes
in C. elegans

We predicted new modifier loci for mutations in three C. elegans
genes by their connectivity to the previously identified genetic
interaction partners of these genes (Lehner et al. 2006a). For each
gene in the genome, the log likelihood scores of their WormNet 2
interactions to the previously identified modifiers were summed.
All genes were then ranked using these summed scores. For each
mutation we aimed to test the 96 highest-ranked predictions that
had not been tested in our previous screen (Lehner et al. 2006a)
and for which RNAi clones were available in the Ahringer feeding
library (Kamath et al. 2003). Excluding poorly growing bacterial
clones that were not tested, these RNAi library clones are listed in
Supplemental Tables S6–S8.

Experimental validation of novel interactions in C. elegans

We performed RNAi screens in liquid culture in 96-well plates as
described (Lehner et al. 2006a,b). In brief, synchronized L1 stage
animals were added at a density of approximately 15 animals per
well to a total volume of 50 mL of media containing each RNAi
feeding strain or control bacteria and incubated with shaking at
20°C. Viability phenotypes (sterility, lethality) were scored by vi-
sual inspection after 4 and 5 d of incubation, directly comparing
the phenotype of each RNAi treatment in mutant and wild-type
(Bristol N2) animals. To be considered an interaction, the RNAi-
treated mutant strain had to show a phenotype considerably
stronger than both that of the mutant strain and that resulting
from the RNAi treatment in wild-type (N2) animals, as described
(Lehner et al. 2006a,b). All feeding experiments and controls were
repeated four times in each experiment, and the complete exper-
iment was replicated three times. An interaction had to be ob-
served in at least two wells of each individual experiment, and in at
least two of three repeats. The identities of all positive RNAi feeding
clones were confirmed by sequencing. The following C. elegans
strains were used: PS1461 [ark-1(sy247)] (Hopper et al. 2000),
UP604 [sos-1(cs41)] (Rocheleau et al. 2002), CZ414 [vab-1(e1699)]
(George et al. 1998).
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