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SUMMARY
Changes in gut microbiota have been associated with several diseases. Here, the International Multiple Scle-
rosis Microbiome Study (iMSMS) studied the gut microbiome of 576 MS patients (36% untreated) and genet-
ically unrelated household healthy controls (1,152 total subjects). We observed a significantly increased
proportion of Akkermansia muciniphila, Ruthenibacterium lactatiformans, Hungatella hathewayi, and Eisen-
bergiella tayi and decreased Faecalibacterium prausnitzii and Blautia species. The phytate degradation
pathway was over-represented in untreated MS, while pyruvate-producing carbohydrate metabolism path-
ways were significantly reduced. Microbiome composition, function, and derivedmetabolites also differed in
response to disease-modifying treatments. The therapeutic activity of interferon-bmay in part be associated
with upregulation of short-chain fatty acid transporters. Distinct microbial networks were observed in un-
treated MS and healthy controls. These results strongly support specific gut microbiome associations with
MS risk, course and progression, and functional changes in response to treatment.
INTRODUCTION

Multiple sclerosis (MS) is an autoimmune disease of the CNS

characterized by demyelination, axonal damage, and progres-

sive neurologic disability. The etiology and pathogenesis of MS

is complex and remain elusive, although both genetic and envi-

ronmental factors are involved. Gut microbiota, an important

modulator of the immune response (Geva-Zatorsky et al.,

2017) and brain function, has emerged as a likely environmental

contributor to MS (Esmaeil Amini et al., 2020; Kadowaki and

Quintana, 2020; Probstel and Baranzini, 2018).

Alterations in commensal gut microbiota have been linked to

many inflammatory conditions (Honda and Littman, 2016).

Numerous studies including ours have shown both depletion

and enrichment of certain bacteria in MS patients compared

with healthy controls (Berer et al., 2017; Chen et al., 2016a;

Cox et al., 2021; Jangi et al., 2016), suggesting certain taxamight

be associated with either disease pathogenesis or progression.

It remains uncertain whether the disease results from microbial

alterations, or vice versa. Mouse and human studies indicate

that microbiota can potentially affect the onset and progression

of diseases mediated by different immune effector cells and sol-

uble metabolic, immune, and neuroendocrine factors modulated

by gut microbes (Camara-Lemarroy et al., 2018; Probstel and

Baranzini, 2018).

Although microbial changes in MS have been detected

across different studies, most of the alterations were reported
C

in relapsing-remitting MS (RRMS), whereas few studies investi-

gated the microbiome in progressive MS. Furthermore, it is

difficult to identify a common pattern since results are rarely

concordant (Cox et al., 2021; Kozhieva et al., 2019; Reynders

et al., 2020). The gut microbiota can also be altered by drugs

with either beneficial or undesirable effects. Many common

drugs have antimicrobial effects or exert a large impact on

the composition of gut microbiome, suggesting that therapeutic

efficacy may be due to the effects of disease-modifying thera-

pies (DMTs) on gut microbiota (Castillo-Alvarez et al., 2018;

Cox et al., 2021; Jangi et al., 2016; Maier et al., 2018; Sand

et al., 2019).

Current microbiome studies in MS are limited by the relatively

small size of the cohort analyzed and inadequate handling of

multiple confounding factors, such as genetic heterogeneity of

participants, geographic location, disease subtype, treatment,

and diet. Also, many studies rely on 16S rRNA sequencing,

which offers low resolution to identify MS-associated species.

To overcome these challenges, the International Multiple Scle-

rosis Microbiome Study (iMSMS) is systematically recruiting

MSpatients and household healthy controls (HHCs) in the United

States, Europe, and South America. The advantages of the

household-controlled experimental design, sequencing method,

and handling of confounding factors (e.g. geographic location

and diet) on gut microbiome were recently reported in a pilot

cohort of 128 patient:control pairs.(The iMSMS Consortium,

2020) Here, we present a large microbiome study of MS and
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Figure 1. Study summary and overall strategy

(A) Workflow of microbiome study in 576 MS patients and their HHCs.

(B) Boxplot of microbiome a-diversity in MS, RRMS, PMS, and their HHCs (ANOVA, n.s., not significant).

(C and D) PCoA of weighted UniFrac community distance by disease and treatment status (C) and disease subtype (D) (R2 and FDR-adjusted p valueswere tested

by PERMANOVA).

(E) Bar plot showing the effect size (Adonis R2) of confounders significantly associated with gut microbial variations (weighted UniFrac distance, PERMANOVA,

FDR-adjusted p < 0.05).

See also Figures S1 and S2 and Tables S1, S2, and S4.
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healthy controls (n = 576 pairs) and investigate relationships with

MS susceptibility, progression, and treatment.

RESULTS

A total 576 pairs of MS patients and genetically unrelated HHCs

were recruited between September 2015 and January 2019

from seven sites (recruiting centers), located in San Francisco,
3468 Cell 185, 3467–3486, September 15, 2022
Boston, New York, Pittsburgh, Buenos Aires, Edinburgh, and

San Sebastián (Figure 1; Tables 1 and S1). The first 128 pairs

were recruited before October 2016 (cohort 1 [The iMSMS Con-

sortium, 2020]) and the subsequent 448 pairs were recruited

before January 2019 (cohort 2). Among the 576 MS patients,

209 (36%) were untreated and 367 (63%) were treated with a

DMT. Treatments included oral agents fingolimod (n = 71) and

dimethyl fumarate (DMF, n = 86); injectables glatiramer acetate



Table 1. Sample characteristics for 576 pairs of MS and their HHCs

HHC MS RRMS PMS

n % n % n % n %

Number 576 50 576 50 437 75.9 139 24.1

Age (y) 50.6 (40.8–61) 48.9 (40–59) 45.8 (37–55) 58.6 (54–65)

Female 201 34.9 400 69.4 312 71.4 88 63.3

BMI 26.9 (23.5–29) 25.4 (21.8–27.6) 25.4 (21.8–27.5) 25.3 (21.8–27.8)

EDSS – – 2.6 (1–4) 1.77 (0–2.5) 5.21 (3.75–6.5)

Disease duration (y) – – 14.2 (6–21) 12.5 (5–18) 19.6 (9.5–28.5)

MSSS – – 3.37 (0.86–5.57) 2.5 (0.655–3.65) 6.11 (4.74–7.53)

Untreated – – 209 36.3 112 25.6 97 69.8

Treated – – 367 63.7 325 74.4 42 30.2

Treatment

Fingolimod – – 71 12.3 66 15.1 5 3.6

Dimethyl fumarate – 86 14.9 77 17.6 9 6.5 –

Glatiramer acetate – – 68 11.8 66 15.1 2 1.4

Interferon – – 87 15.1 76 17.4 11 7.9

anti-CD20 – – 28 4.9 15 3.4 13 9.4

Natalizumab – – 27 4.7 25 5.7 2 1.4

Recruiting site

San Francisco 164 28.5 164 28.5 110 25.2 54 38.8

Boston 42 7.3 42 7.3 35 8.0 7 5.0

New York 59 10.2 59 10.2 45 10.3 14 10.1

Pittsburgh 12 2.1 12 2.1 12 2.7 0 0.0

Buenos Aires 129 22.4 129 22.4 120 27.5 9 6.5

Edinburgh 131 22.7 131 22.7 82 18.8 49 35.3

San Sebastián 39 6.8 39 6.8 33 7.6 6 4.3

Data are presented as mean (interquartile range, IQR); y, year; BMI, body mass index; EDSS, Expanded Disability Status Scale; MSSS, Multiple Scle-

rosis Severity Score.
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(GA, n = 68) and interferon (IFN, n = 87); and infusion agents anti-

CD20monoclonal antibodies (n = 28) and natalizumab (n = 27). Of

the 576 patients, 437 (76%) had RRMS, 68 (12%) secondary pro-

gressive MS (SPMS), and 71 (12%) primary progressive (PPMS).

Given the heterogeneity in the assessment of patientswith SPMS

and PPMS, they were combined into a single category, progres-

sive MS (PMS, n = 139, 24%) for subsequent analyses.

All participants completed a clinical survey to report the dis-

ease status and treatment, and a high proportion of participants

(94%, n = 1,086) completed the subject survey to report the de-

mographics, medication, lifestyle, and physiology factors (Fig-

ure 1A; Table S1). Most participants (90%, n = 1,034) also

completed the online food frequency questionnaire (FFQ). A

summary of dietary questionnaires and the dietary intake is pro-

vided in Table S2. The healthy eating index (HEI-2015 with 10

components) was also calculated for all qualifying participants

(Table S3).

Altered gut microbial composition in MS
Wefirst used16S rRNAdata to study theglobalmicrobial compo-

sition (a- and b-diversity). The V4 region of the bacteria 16S rRNA

genewas amplified on an IlluminaMiSeqplatform using the Earth

Microbiome Project protocol (Caporaso et al., 2012). Amplicon
reads from two cohort samples were analyzed using QIITA (Gon-

zalez et al., 2018; Hillmann et al., 2018) to combine the forward

and reverse reads, trim short reads of less than 150 bp, and

assign filtered reads to amplicon sequencing reads (ASVs) using

default Deblur parameters against Greengenes (version 13.8 at

99% identity) as described in QIIME2 documents (Caporaso

et al., 2010). 16S rRNA sequencing has been more commonly

used inmicrobiome studies to date, and several well-established

databases (e.g. Greengenes [DeSantis et al., 2006]) are available.

The 576 pairs were processed and sequenced in two cohorts

(128 pairs in cohort 1 and 448 pairs in cohort 2) (STAR Methods;

Table S4). For the first cohort, Q-tip samples (i.e., dry) and snap

frozen (i.e., wet) samples were processed using the QIAamp

PowerFecal DNA Kit (ref 12830-50). The second cohort samples

were processed using the MagAttract PowerSoil DNA EP Kit (ref

27100-4-EP).

The ASVs characterized by 16S rRNA sequencing were rare-

fied to 10,000 sequences per participant sample for microbial di-

versity analysis. a-diversity was measured by Shannon (Shan-

non, 1997) and Chao1 (Chao, 1984) indices (Table S4). The

microbial composition and diversity were highly correlated in

duplicate samples sequenced in the two cohorts (Figures S1A–

S1C) and also in duplicated samples processed by different
Cell 185, 3467–3486, September 15, 2022 3469



Figure 2. Microbial taxa alterations between MS and HHC
(A) Taxa altered in untreatedMS (n = 209), untreated RRMS (n = 112) or untreated PMS (n = 97) versus their HHCs (mixed linear regressionmodel adjusted for age,

BMI, sex, recruiting site, and house). ‘‘-’’ indicates species with lower variance across samples were filtered out and not included in linear regression. *FDR < 0.05,

**FDR < 0.01, ***FDR < 0.001.

(B) Arcsine square-root transformed relative abundance of 3 decreased species and 3 increased species in untreated MS versus HHCs.

(legend continued on next page)
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DNA isolation methods (Figures S1D–S1F), thus allowing us to

merge all sequencing samples for a joint analysis. After removing

samples with low coverage (<10,000 reads), 500 pairs of MS and

household control participant samples were used for diversity

analysis (Table S4).

No significant difference in a-diversity was observed between

MS and HHC groups as measured by Shannon and Chao1 met-

rics (n = 1,000, ANOVA p > 0.05) (Figures 1B and S2A). We also

found no significant difference in a-diversity across patient:HHC

pairs of RRMS (n = 766), PMS (n = 234, ANOVA p > 0.05) (Fig-

ure 1B), untreated MS (n = 358), and treated MS (n = 642,

ANOVA p > 0.05) (Figure S2B). Intriguingly, b-diversity-based

sample clustering revealed a significant difference in MS regard-

less of treatment and also differed in untreated or treated MS

group status compared to their HHC (PERMANOVA false dis-

covery rate (FDR) < 0.05) (Figure 1C). No significant difference

was observed between untreated and treated MS patients

(PERMANOVA FDR > 0.05) (Figure 1C). Different microbial com-

munities were also observed across patient:HHC pairs of RRMS

and PMS patients and when comparing RRMS versus PMS pa-

tients (PERMANOVA FDR < 0.05) (Figure 1D).

We next tested howmuch of the variance in microbial diversity

(weighted UniFrac distances) was explained by the host con-

founders, including demographics, lifestyle, disease, medica-

tion, and physiology factors (Table S4) (Vujkovic-Cvijin et al.,

2020; The iMSMS Consortium, 2020). Not surprisingly, the

recruitment site showed a significant and dominant effect on

the microbial composition (PERMANOVA FDR < 0.05) (Fig-

ure 1E), as we and other studies have reported (Gaulke and

Sharpton, 2018; The iMSMS Consortium, 2020). By checking

the gut microbial a-diversity in individuals from each recruitment

site, we observed lower microbial diversity in both healthy and

MS participants from New York but a higher diversity in partici-

pants from San Francisco and San Sebastián (ANOVA

p > 0.05) (Figure S2C). We hypothesize that these differences

in microbial diversity might be associated with different dietary

habits or the FFQ not completely capturing the nuances of diets

in different countries (see dietary analysis). Microbial differences

associated with geography were also shown by the principal

coordinates analysis (PCoA) of the microbiome b-diversity (Fig-

ure S2D). The second and third largest components were

explained by disease status (RRMS/HHC, PMS/HHC) and treat-

ment status (treated MS/HHC, untreated MS/HHC), implying an

altered gut microbiome in MS patients versus HHC as well as an

effect of treatment on changing microbial structure.

Age, sex, and BMI also showed significant effects onmicrobial

compositions (Figure 1E). Our household design effectively re-

duces age-associated variation as the great majority of house-

hold participants are spouses of comparable age (Table 1).

Smoking and education also exerted significant effects, but

these effects were variable across recruitment sites (e.g., partic-

ipants from San Francisco, Boston, and New York are less likely
(C and D) Species were significantly correlated with MS Severity Scores (MSS

Spearman correlations were adjusted for age and body mass index. *p < 0.05, *

RRMS untreated PMS and their corresponding HHCs.

See also Table S5.
to smoke and reported higher education) (Figures S2E and S2F).

A smaller effect was identified bymedication use andMScomor-

bidities (Figure 1E) as MS patients tend to use more medications

and have depression or anxiety (Fisher’s exact test p < 0.001)

(Figure S2G). No significant microbial divergence was related

to factors such as household pets, birth method, or asthma in

our study (Table S4).

Disease-associated microbial changes adjusted for
confounders
Shallow shotgun sequencing with as little as 0.5 million se-

quences per sample has been shown to be a powerful and

cost-effective alternative to whole metagenome sequencing

(Hillmann et al., 2018; Shapira et al., 2009). 1 ng of input DNA

was used in a 1:10 miniaturized Kapa Hyper-Plus protocol. The

pooled library was sequenced as a paired-end 150-cycle run

on an Illumina HiSeq2500 v2 (cohort 1) or NovaSeq 6000 (cohort

2) at the UCSD IGMGenomics Center with sequencing depth 0.5

million reads per sample. Due to the high correlation between

16S rRNA and shallow sequencing at both phylum and genus

levels (The iMSMS Consortium, 2020), we used shallowmetage-

nomic data to identify disease-associated taxa and their func-

tions. To achieve this, we performed a mixed linear regression

model on metagenomics taxa (Table S5) in untreated MS versus

HHCs. For this analysis, microbial composition and pathway

were normalized as relative abundance and further transformed

with a variance-stabilizing arcsine square-root transformation

(Lloyd-Price et al., 2019; Morgan et al., 2012; Sokal, 1982). The

organism-pathway-reaction-compound network was built by

Scalable Precision Medicine Oriented Knowledge Engine

(SPOKE), a large graphwith multiple types of nodes and relation-

ships integrated from more than 30 publicly available databases

covering human and bacterial molecular interactions (Himmel-

stein et al., 2017; Nelson et al., 2021).

Compared to HHCs, 7 species were significantly reduced in

untreated MS, whereas 16 species including were significantly

increased in this group (FDR < 0.05) (Figure 2A). We observed

a similar trend for these same species in untreated RRMS and

PMS, although some did not reach significance likely due to

the smaller sample size and relatively higher interindividual het-

erogeneity of these groups. Intriguingly, a larger decrease of

Faecalibacterium saccharivorans and F.prausnitzii and a larger

increase of Ruthenibacterium lactatiformans, H. hathewayi, and

Eisenbergiella tayi were found in untreated PMS compared

with untreated RRMS (Figure 2B), suggesting the alteration of

these species could be associated with disease progression.

We next tested the correlation between microbiota and the

Multiple Sclerosis Severity Score (MSSS), adjusting for age

and BMI. Several species showed correlations with disease

severity in untreated RRMS and PMS patients (Spearman’s cor-

relation p < 0.05) (Figures 2C and 2D), consistent with a recent

study (Cox et al., 2021). Specifically, some Bacteroides species
S) in untreated RRMS patients (n = 112, C) or in untreated PMS (n = 97, D).

*p < 0.01. Averaged abundance of significant species are shown in untreated

Cell 185, 3467–3486, September 15, 2022 3471



Figure 3. Sequence-based functional difference between MS and HHC

(A) Metagenomics pathways altered in untreated MS, untreated RRMS, or untreated PMS versus their HHCs (mixed linear regression model adjusted for age,

BMI, sex, recruiting site, and house, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001) and dominant microbial species contributing to ‘‘PWY-4702’’ and ‘‘GALACT-

GLUCUROCAT-PWY’’ pathways.

(B) Arcsine square-root transformed relative abundance of two proteins inAkkermansia muciniphila that participate in phytate degradation I pathway (PWY-4702)

(paired t test, *p < 0.05).

(legend continued on next page)
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were correlated with lower MSSS in RRMS, and short-chain fatty

acid (SCFA) producers like Butyrivibrio, Clostridium, and Rumi-

nococcuswere correlated with lower MSSS in PMS. Conversely,

Collinsella aerofaciens, shown to increase disease severity

in collagen-induced arthritis mice (Chen et al., 2016b), was

associated with a higher MSSS in RRMS patients. Consistent

with studies (Larsen, 2017) showing increased inflammatory

properties of several Prevotella species (including P. buccalis,

P. corporis, P. disiens, and P. copri) in chronic inflammation,

we found these were associated with higher MSSS in PMS pa-

tients. Finally, Streptococcus thermophilus, Azospirillum sp.

47_25, and Rhodospirillum sp. UNK.MSG-17 were also corre-

lated with MSSS, albeit in different direction for RRMS (positive)

and PMS (negative).

Functional alterations in the gut microbiome of
untreated MS patients
We next explored the functional potential of the MS gut metage-

nome using the HUMAnN2 workflow. Generally, all microbes

perform four core metabolic pathways, biosynthesis, degrada-

tion, energy metabolism, and macromolecule modification (Fig-

ure S3A). No significant differences in the functional potential of

gut microbes were observed. Principle-component analysis of

the abundance of functional pathways also failed to identify sig-

nificant changes between untreatedMSpatients (RRMS or PMS)

and HHCs (PERMANOVA p > 0.05) (Figure S3B). However, when

testing individual pathways, we found that phytate degradation I

(PWY-4702), was significantly more represented in MS patients

(mixed linear regression FDR < 0.05) (Figure 3A). Several spe-

cies, including Akkermansia muciniphila, E. coli, and Crono-

bacter sakazakii, have the ability to degrade phytate via this

pathway. We found A. muciniphila (Figure 2A) and two of its en-

coded proteins in this pathway (4-phytase, Amuc_0145, and

Inositol-1-monophosphatase, Amuc_1242) significantly more

represented in untreated RRMS and PMS patients (Figure 3B).

As multiple (and sometime opposing) functional capabilities

have been reported for A. muciniphila strains, we implemented

the Metagenomic Intra-Species Diversity Analysis System

(MIDAS) (Nayfach et al., 2016) to estimate strain-level genomic

variation. In total, 58 samples had sufficient sequencing

coverage allowing us to identify SNPs and gene content from

A. muciniphila (Figure S4). To distinguish possible strains from

these samples, we compared 2,913 genes (presence/absence)

and identified four gene clusters and two sample clusters.

None of the sample clusters was significantly correlated with

disease status, sex, treatment status, or geographic site (chi-

squared test p > 0.05). The majority of A. muciniphila genes
(C) Organism-pathway-reaction-compound network built on pathway ‘‘GALACT

dation’’ using the SPOKE knowledge graph.

(D) Arcsine square-root transformed relative abundance of protein 2-dehydro-3-

pates in superpathway of hexuronide and hexuronate degradation pathway (GAL

(E) High-class organized pathways altered in treated and untreated RRMS (mixed

*FDR < 0.05, **FDR < 0.01, ***FDR < 0.001).

(F) Pathways were significantly correlated with MSSS in untreated RRMS patient

correlations are adjusted for age and BMI. *p < 0.05, **p < 0.01. Averaged abunda

compared to their corresponding HHCs.

See also Figures S3 and S4 and Table S5.
were shared across samples (i.e., core genes), but some genes

showed a distinct pattern. Functional analysis revealed that

‘‘Sulfite reductase [NADPH] hemoprotein beta-component (EC

1.8.1.2),’’ encoded by the cysI gene, was present in cluster 1

but not cluster 2.While additional studies are needed to establish

their relevance to MS, we were able to identify the presence of

at least two A. muciniphila strains with differences in sulfur

metabolism.

Conversely, six pathways were more represented in HHC,

mostly explanined by the increase of F. prausnitzii (mixed linear

regression FDR < 0.05) (Figures 3B and S3B). We also found

four other carboxylates metabolism pathways, which produce

pyruvate via protein 2-dehydro-3-deoxy-phosphogluconate

aldolase (EC 4.1.2.14), were enriched in healthy controls

(Figure 3C). This protein was identified in F. prausnitzii

(FP2_23290, D4K064) and significantly decreased in both un-

treated RRMS and PMS patients (paired t test p < 0.05) (Fig-

ure 3D). Finally, by integrating the metabolic pathways into

higher-class pathway level, we identified that cyclitols degrada-

tion and fermentation to acids were more abundant in untreated

MS patients, while carboxylates degradation, lysine synthesis,

S-adenosyl-L-methionine biosynthesis, and sucrose degrada-

tion were enriched in healthy controls (mixed linear regression

FDR < 0.05) (Figure 3E).

We found different pathways associated with disease severity

in untreated RRMS and PMS (Spearman’s correlation p < 0.05)

(Figure 3F). ‘‘PWY-4981: L-proline biosynthesis II (from arginine)’’

was positively correlated with higher MSSS, mostly explained by

the abundance of C. aerofaciens (Figure S3C), which was also

correlated with higher MSSS (Figure 2C). Conversely, lower rep-

resentation of the ‘‘PWY-5097: L-lysine biosynthesis VI’’ pathway

(Figure 3A) was correlated with a lower MSSS PMS, mostly ex-

plained by Bacteroides species and F. prausnitzii (Figure S3D).

Specific interacting microbial communities were
enriched in MS
We next computed species-species co-abundance networks

using SparCC (Friedman and Alm, 2012) method (in R using

SpiecEasi package [Kurtz et al., 2015]), which is a tool to infer

linear relationships with high precision for high diversity compo-

sitional data. SparCC correlations were adjusted for age, sex,

and BMI using cor2por function from R package ‘‘corpcor.’’ In

total, 1,677 species were used for the analysis, resulting in

116,397 correlations across 1,372 species in MS patients and

105,304 correlations across 1,375 species in HHCs (absolute

Sparcc rR 0.1, FDR < 0.05, Table S6). After filtering out correla-

tions with r < 0.4 (based on the network centrality distribution)
-GLUCUROCAT-PWY: superpathway of hexuronide and hexuronate degra-

deoxy-phosphogluconate aldolase in Faecalibacterium prausnitzii that partici-

ACTGLUCUROCAT-PWY) (paired t test, *p < 0.05).

linear regression model adjusted for age, BMI, sex, recruiting site, and house,

s (RRMS, n = 112, top) or in untreated PMS (PMS, n = 97, bottom). Spearman

nces of significant pathways are shown in untreated RRMS and untreated PMS

Cell 185, 3467–3486, September 15, 2022 3473



Figure 4. Disease status specific co-abundance species

(A and B) Microbial co-abundance communities specific for (A) untreated MS and (B) HHCs by cohort specific analysis (quantile range outlier). Each node in-

dicates one species, and color indicates the phylum classification. Each edge represents a significant species-species co-abundance relationship.

(C) Overlapped counts of species and co-abundances in untreated-MS-specific and HHC-specific networks.

(D) Differential species in untreated MS versus HHC were overlapped with cohort-specific species.

(E and F) Functional pathways unique to the species highlighted in untreatedMS (E)- or HHC (F)-specific networks. Line size indicates betweenness centrality of a

species in the cohort-specific co-abundance network.

See also Figure S5 and Tables S5 and S6.
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(Figure S5A) and subnetworks with fewer than 2 species, we

identified a network of 773 taxa with 5,688 correlations in

HHCs (dominated by 555 Firmicutes and 196 Bacteroidetes spe-

cies) and a network of 786 taxa with 6,742 correlations in MS

(dominated by 549 Firmicutes and 197 Bacteroidetes species)

(Figure S5B). Notably, the majority of taxa (n = 702) and correla-

tions (n = 4,131) between MS and HHCmicrobial networks over-

lapped (Figure S5C), suggesting that the fundamental role of

commensal microbes remains stable even under different bio-

logical conditions.

Cohort-specific analysis revealed 215 correlations across 119

species in untreated MS patients (mean r = 0.78, FDR <0.05) and

195 correlations across 139 species in HHCs (mean r = 0.783,

FDR < 0.05) (Figures 4A and 4B). Cohort-specific species were

linked to their MetaCyc pathways. As many species share path-

ways, we focused on those that are unique to the cohort-specific

species. Species from the same phylumwere clustered together
3474 Cell 185, 3467–3486, September 15, 2022
in both MS and HHC networks, suggesting a cooperative role of

these species in response to the environment. Remarkably, we

observed different Firmicutes/Bacteroidetes (F/B) ratio for the

MS-specific network (F/B = 2.5) and HHC-specific network

(F/B = 1.03) (hypergeometric test p < 0.01). Interestingly, 45

unique species (largely dominated by Bacteroides and Prevo-

tella) composed the HHC network (Figure 4C).

Surprisingly, among 21 significantly altered species (untreated

MS versus HHC, Figure 2A), seven were identified in both theMS

and healthy specific networks, and only one species (Varibacu-

lum cambriense) was found in the MS network (Figure 4D). This

suggests that co-abundance relationships and differential mi-

crobial abundance reflect orthogonal information. While the

group-specific species did not show significant differences in

abundance, some have unique functions (Figures 4E and 4F).

For example, [Clostridum] innocuum and Salmonella enterica

(with potential roles in drug resistance and pathogenicity) were



Figure 5. Treatment-associated metagenomic changes in RRMS patients

(A) PCoA of weighted UniFrac community distance of RRMS subjects treated and untreated, and their corresponding HHCs (p values were obtained by

PERMANOVA).

(B and C) Metagenomics species (B) and metabolic pathways (C) altered in treated and untreated RRMS (mixed linear regression model adjusted for age, BMI,

sex, recruiting site, and house). *p < 0.05, **p < 0.01, ***p < 0.001 and linear coefficient R upper 5% or coefficient % lower 5%.

See also Figure S6 and Tables S4 and S5.
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specific to the MS network, while Bacteroides vulgatus, Bacter-

oides thetaiotaomicron, Prevotella fusca, and Prevotella denti-

cola (with potential roles in glycan biosynthesis) were specific

to the HHC network. Altogether, these results suggest that mi-

crobial co-abundance network analyses can identify highly inter-

acting communities that may contribute to health or disease

status.

Impact of treatment on gut microbiota
We next evaluated how DMTs may affect gut microbiome

composition in RRMS patients receiving any of six commonly

used treatments in our study. Overall, the microbial composition

measured by b-diversity did not differ between treated and un-

treated RRMS patients (except for the IFN-treated group). How-

ever, significant differences in b-diversity were observed when

patients within each treatment group were compared to their

corresponding HHC (PERMANOVA) (Figure 5A).

Due to the heterogeneity of treated and untreated RRMS pa-

tients recruited frommultiple locations and unequal sample sizes
of these groups, we mainly focused our analyses on gut micro-

biome by comparing untreated or treated RRMS groups to their

HHCs (mixed linear regression) (Figures 5B and 5C). A direct

comparison between untreated RRMS and treated RRMS was

shown in Figures S6A and S6B. Intriguingly, the microbial

changes observed in untreated RRMS patients (versus HHCs)

were not replicated in treated RRMS (versus HHCs). Specifically,

several taxa increased in untreated RRMS subjects showed no

difference within DMT groups, including Parabacteroides mer-

dae CAG:48, A. muciniphila, and other Akkermansia species.

Use of DMTs was also associated with changes in multiple

taxa that were not significantly different between MS and HHC.

For example, DMF, which is hydrolyzed into monomethyl fuma-

rate before exerting its therapeutic effect, specifically reduced

Bacteroides stercoris, Clostridium, and Eubacterium species,

and fingolimod specifically reduced Bacteroides finegoldii

CAG:203, Roseburia faecis, and Blautia species. IFN-b treat-

ment, thought to decrease pro-inflammatory cytokines and pre-

vent the migration of activated T cells across the blood-brain
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barrier, was associated with dysbiosis of SCFA-producing

bacteria like Ruminococcus sp., Clostridium sp., F. prausnitzii,

Roseburia inulinivorans, and Roseburia intestinalis and also

with increased Parabacteroides distasonis, which have been

shown to have multiple metabolic benefits in obesity (Wang

et al., 2019). Notably, Bacteroides uniformis was significantly

increased by IFN treatment but reduced by GA and natalizumab

therapy. This bacterium was reported to be associated with MS

(Miller et al., 2015) but also with a protective role in obesity (Lo-

pez-Almela et al., 2021). GA exerted a modest impact on gut mi-

crobes compared to other DMTs. Lastly, infusion of natalizumab

or anti-CD20 monoclonal antibody altered gut microbes signifi-

cantly. Phascolarctobacterium sp. CAG:207 was increased,

while Prevotella species and Bifidobacterium longum were

decreased in response to natalizumab. A aeduction of Bacter-

oides finegoldii CAG:203 and Blautia sp. CAG:37were observed

in anti-CD20-treated patients.

Based on metagenomic sequencing, numerous metabolic

pathways appeared to be altered in response to the different

DMTs, and many of them are included in the same high-class

pathway (Figure S6C). We found that pathways related to lysine

synthesis, sugar nucleotides, and unsaturated fatty acids

biosynthesis were decreased significantly in untreated RRMS

but modulated differently by the various DMTs. Of interest,

the increased cyclitols degradation pathways in untreated

RRMS remained highly abundant even after treatment

(Figures 5C and S6C). We also identified various metabolic

pathways that were differentially modulated by specific thera-

pies. For example, DMF use increased heme synthesis and

enzyme cofactor biosynthesis pathways. In addition, DMF

and IFN use was associated with an increase in L-ornithine

biosynthesis and carrier biosynthesis. Furthermore, GA use

was associated with increased peptidoglycan biosynthesis

and natalizumab with increased lipid biosynthesis, whereas a

decrease of guanosine nucleotides degradation pathway was

associated with fingolimod treatment (Figures 5C and 5S6C).

Altogether, DMTs showed significant and specific impact on

gut microbiome both structurally and functionally, indicating

the importance of stratifying microbiome analyses by treatment

status.

To further investigate the mechanism of DMTs in MS and their

interactions with gut microbiota, we performed metabolomic

profiling in untreated RRMSpatients (N = 79) and in those treated

with DMF (n = 47), fingolimod (n = 39), GA (n = 31), and IFN-b

(n = 49) as well as their corresponding HHCs. A panel of global

metabolites and 8 targeted SCFAs in both feces and serum

samples were measured using ultrahigh performance liquid
Figure 6. Treatment-associated metabolomic alterations in RRMS pat

(A and B) 31microbe-derivedmetabolites (A) and 8 SCFAs (B) in treated and untre

linear regression model adjusted for age, BMI, sex, recruiting site, and house. *p

(C) Disease-duration-adjusted MS severity score (gMSSS) was compared betwe

(D) KEGG pathways enriched by 23 microbe-derived metabolites in response to

(E) Concentration of propionic acid in feces (left) and serum (right) compared for tre

fumarate; GA, glatiramer acetate.

(F) Expression of SLC16A in human bronchial epithelial cells stimulated by IFN-b

probes (202236_at and 209900_s_at) of Affymetrix HT Human Genome U133 Ar

See also Table S7.
chromatography-tandem mass spectroscopy (UPLC-MS/MS)

by Metabolon Inc. (Durham, North Carolina) (Table S7).

We found 31 metabolites significantly different between un-

treated patients and controls or in response to at least one MS

drug (mixed linear regression p < 0.05) (Figure 6A). Consistent

with their expected functions and origin, we found higher vari-

ability in fecal metabolites compared with their corresponding

serum levels (with the notable exception of increased serum

fumarate in DMF-treated patients). We also identified significant

changes in the levels of 8 SCFAs in either serum or stool for at

least one group (mixed linear regression p < 0.05) (Figure 6B).

Remarkably, the vast majority of changes in microbiota-derived

fecal metabolites were toward lower levels among MS patients

and even more significantly in response to DMTs (except for

GA, Figure 6A). Higher levels of metabolic dysfunction have

been reported to be associated with increased disability in MS

(Lazzarino et al., 2017; Villoslada et al., 2017).We found no differ-

ence of disease severity (measured by global MSSS) among

RRMS patients (treated or untreated) (Figure 6C). This suggests

that the altered metabolites reported here are in response to the

MS drugs, not the disease process. Interestingly, we found spe-

cific signatures of microbe-derived metabolites (stool) in RRMS

patients in response to each treatment. The most notable

changes in gut metabolites were induced in response to fingoli-

mod and IFN-b.

While fingolimod is an oral drug, and changes to the gut micro-

biota might be expected, the profound metabolic signature of

IFN-b (an injectable) was most intriguing. A functional analysis

of the 23 IFN-b-associated metabolites revealed a significant

enrichment in pathways involving amino acid metabolism (e.g.,

‘‘arginine biosynthesis’’), carbohydrate (i.e., ‘‘citrate cycle’’),

nucleotide (i.e., ‘‘purine’’), and energy (‘‘nitrogen’’) metabolism

(MetaboAnalyst pathway enrichment FDR < 0.05) (Figure 6D).

In contrast, GA exerted an almost null impact on stool-derived

metabolites. These findings are in agreement with previous

studies, in which only modest transcriptional changes were

observed in peripheral blood mononuclear cells (PBMCs) after

treatment with GA compared to IFN-b (De Jager et al., 2009; Ot-

toboni et al., 2012). Also of interest, these distinct metabolomic

alterations were consistent with functional predictions derived

from shotgun sequencing (Figures 5B and 5C).

We noted that pyruvate was significantly decreased in both

feces and serum samples fromRRMS patients treated with fingo-

limod. Interestingly, this finding correlates well with the significant

depletion of taxa containing the pathway ‘‘CARBOXYLATES-

DEG’’ (which produces pyruvate) in fingolimod-treated patients

(Figures 5C and 5S6). We also observed that the concentration
ients

ated RRMS in both stool and serum. Linear coefficient wasmeasured bymixed

< 0.05, **p < 0.01, ***p < 0.001.

en untreated and treated RRMS (ANOVA).

interferon (FDR < 0.05).

ated and untreated RRMS, compared to their respective HHCs. DMF, dimethyl

from study by Shapira et al. (2009). The SLC16A gene was represented by two

rays.
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of fecal SCFA (such as acetate and propionate) was consistently

lower in RRMS patients, regardless of treatment (Figure 6B),

consistentwith our finding of the depletion ofF. prausnitzii (amajor

SCFA-producing bacteria) in MS. A decreased amount of fecal

SCFAhasalsobeen reported inRRMSandPPMSpatients in other

studies (Takewaki et al., 2020; Zeng et al., 2019).

Propionate supplementation in MS patients was associated

with an increased Treg/Th17 ratio, leading to long-term clinical

improvement (Duscha et al., 2020). Interestingly, we found a sig-

nificant increase in serum propionic acid (acetic and butyric acid

also followed this same trend, without reaching statistical signif-

icance) in RRMS patients treated with IFN-b (Figures 6B and 6E).

Since most SCFAs produced in the colonic lumen are actively

transported to the lamina propria and further into the blood

stream (Olsson et al., 2021; Venegas et al., 2019), we hypothe-

sized that IFN-b may increase the intestinal absorption of propi-

onate, as part of its immunomodulatory effect. To address this

hypothesis, we searched whether expression of the genes en-

coding for SCFA transporters MCT1 (SLC16A1) and SMCT1

(SLC5A8) (Miyauchi et al., 2004; Ritzhaupt et al., 1998) were up-

regulated by IFN-b. The Interferome database (Rusinova et al.,

2013) reports an increase of SLC16A1 expression in human

bronchial epithelial cells (no data are available for intestinal

epithelial cells) treated with IFN-b (Figure 6F), potentially sup-

porting our hypothesis.

Diet and gut microbiome
Diet is thought to explain over 20% of microbial structural varia-

tions in humans, implying the potential for dietary strategies in

disease management through gut microbiota modulation

(Rothschild et al., 2018). We administered the validated Block

2005 FFQs (Block, 2005) to our participants (89.8% completion

rate) (Table S2). Recent epidemiologic studies of diet and health

outcomes have also focused on the overall diet quality (Guo

et al., 2004), which can be measured by the heathy eating index

(HEI-2015), where a higher HEI-2015 score indicates greater diet

quality (see Table S3).

Significant differences in diet (measured by Jaccard dissimi-

larity) were associated with BMI, participant household, recruit-

ment site, education, and age (PERMANOVA FDR < 0.05) (Fig-

ure 7A). Not surprisingly, a higher BMI correlated with a lower

HEI-2015 score in both MS patients and healthy individuals

(Pearson’s correlation p < 0.05) (Figure S7A), consistent with ev-

idence that an imbalanced diet exerts a significant influence on

weight (Guo et al., 2004). We also observed that diet quality

increased with age (Pearson’s correlation p < 0.05) (Figure S7A).

There is considerable variation in dietary intakes across coun-

tries (Figure 7B). In particular, we found a significantly lower

average HEI-2015 score in participants from Buenos Aires

when compared with those in San Francisco, New York, Edin-

burgh, and San San Sebastián. While this may indeed indicate

a lower health index, it is noteworthy that the FFQ is standardized

for the US average participant, and diets in other parts of the

world may not adjust properly to this standard. As gut microbial

diversity differed among recruitment sites, we hypothesized that

the diversity was influenced by diet. Indeed, we found that higher

microbial diversity significantly correlatedwith a higher HEI-2015

score in both healthy and MS individuals (Pearson’s correlation
3478 Cell 185, 3467–3486, September 15, 2022
p < 0.01) (Figure 7C). However, although participants from Bue-

nos Aires had lower HEI-2015 scores, their microbial diversity re-

mained high compared to other sites, whereas New York had

higher HEI-2015 scores but comparatively lower microbial diver-

sity (Figure S2C). This may indicate that standardized question-

naires, even if validated, do not fully capture the wide range of di-

etary habits from iMSMS participants and also suggests that the

gut microbiota could be influenced by other factors, such as

physiological activity, water, and air, among others. Also, shifts

in oral microbe composition need to be considered as studies

have shown oral-derived bacteria can colonize and persist in

the intestines (du Teil Espina et al., 2019; Hatton et al., 2018).

Despite the large variance in dietary habits among partici-

pants, we identified a significantly higher diet similarity within

household pairs compared with that of random pairs drawn

from within the same city (ANOVA FDR < 0.05) (Figure S7B).

The lowest diet similarity was found when random pairs of MS

and HHC were assembled from different cities, consistent with

our previous findings (The iMSMSConsortium, 2020) and reflect-

ing distinct dietary habits across cities and countries (Figure 7B).

Finally, we observed a significant correlation between education,

nonsmoker (or former smoker) status, and female sex with a

higher HEI-2015 score (ANOVA FDR < 0.05) (Figures S7C–

S7E), also consistent with findings from previous studies (Ara-

bshahi et al., 2011; Thorpe et al., 2019).

Although a more similar diet was shared among household

participants, the HEI-2015 score of MS patients was significantly

higher than those of healthy controls (paired t test p < 0.001) (Fig-

ure 7D). However, microbial taxa associated with MS status did

not overlap with those associated with diet, thus likely not repre-

senting a confounder. Indeed, we specifically assessed which

dietary components were consumed differently by MS and

healthy participants and whether these differences were associ-

ated with species previously shown to be altered in MS. By

comparing the 10 components from the HEI-2015 (Table S3),

we found MS participants consumed more fruit, vegetables,

and unsaturated fatty acid when compared with HHCs (paired

t test p < 0.05) (Figure 7E), which contributed to their scores (Fig-

ure 7D). We also found that Eubacterium eligens was highly

correlated with a higher HEI-2015 score (Pearson’s correlation

p < 0.01) (Figure 7F) and particularly correlated with intake of

whole grains, fruit, and vegetables (mixed linear regression

p < 0.05 after adjusting for age, sex, BMI, and recruitment site)

(Figure S7F), consistent with previous studies showing that

E. eligens responded significantly to dietary fiber (Chung et al.,

2016). Faecalibacterium sp., Eubacterium sp., and Blautia sp.

were also positively correlated with higher intake of whole grains.

Increased Alistipes obesi abundance was also correlated with

healthier diet (Pearson’s correlation p < 0.05) (Figure 7F). Inter-

estingly, other studies found low Alistipes abundance in individ-

uals with obesity (Thingholm et al., 2019) and associated with

higher meat intake,(Garcia-Ribera et al., 2020). Furthermore,

Alistipes abundance was identified as a predictor of successful

weight loss in a 2-year intervention (including healthier diet) in

adults with obesity (Louis et al., 2016), suggesting a potential

beneficial role of this bacterium in the context of metabolic

health. Altogether, although diet does correlate with changes in

the host microbiota, we were able to tease apart the effects of



Figure 7. Diet and gut microbes

(A) Bar plot showing the effect size (Adonis R2) of confounders associatedwith dietary variations (Jaccard dissimilarity). Confounders showing a significant impact

on gut microbiome were labeled (PERMANOVA, *FDR % 0.05).

(B) Boxplot of HEI measured in the participants from each recruiting site.

(C) Pearson’s correlation between healthy eating index and microbial a-diversity in healthy (blue) and MS (red) individuals.

(D) Boxplot of HEI measured in MS patients and their HHCs (paired t test, ***p < 0.001).

(E) Difference in dietary components between MS and HHC individuals (paired t test, *p < 0.05, ***p < 0.001).

(F) Species significantly correlated with HEI (Pearson’s correlation with FDR < 0.05).

(G) Correlations between dietary component andMS-associated species measured in healthy controls, untreatedMS, and all samples, respectively (mixed linear

regression model adjusted for age, BMI, sex, and recruiting site, *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001).

See also Figures S7 and S8 and Tables S2, S3, S4, and S5.
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diet and disease, in large part due to the household paired

design employed (Figure S7F).

As expected, diet showed a modest effect on MS-associated

taxa after controlling for the environmental impact by household

design in all three groups (mixed linear regression) (Figure 7G).

Still, some disease-associated species were also related to

diet. For example, Ruminococcus torques was enriched in MS

and showed a negative correlation with sodium intake, whereas

no difference in sodium intake was found between MS versus

HHCs. F. prausnitzii correlated positively with fruit (whichMS pa-

tients consumed more), but the bacterium remained reduced in

MS compared with healthy controls. These examples suggest

that these species were more likely related to disease status

than diet.

Phytate degradation I (PWY-4702) pathway was found to be

over-represented in MS patients (Figure 2A). Phytate, a plant-

based antioxidant compound, is a strong chelator of divalent

minerals (e.g., calcium,magnesium, iron, and zinc), which bacte-

ria metabolize intomyo-inositol, a compound with immunoregu-

latory properties (Nerurkar et al., 2020), which was found at lower

levels in MS sera and cerebrospinal fluid (CSF) (Zahoor et al.,

2021). Thus, we hypothesized that this bacterial pathway was

activated (1) in response to increased dietary intake of divalent

minerals by MS patients or (2) as a compensatory mechanism

to produce more myo-inositol. To test this hypothesis, we

compared the dietary mineral intake between MS patients and

their HHCs but found no significant difference (after adjusting

for age, BMI, and sex) (Figure S8A).

Finally, we observed MS patients took more vitamin D supple-

mentation than healthy controls (paired t test p < 0.001) (Fig-

ure S8B), possibly in response to studies showing an association

with reduced risk of developing MS and of disease activity in MS

patients (Munger et al., 2006; Runia et al., 2012).When assessing

the impact of vitamin D usage on microbial composition, we

were unable to find a correlation. We did find a trend toward a

negative correlation with microbial a-diversity for both MS or

HHCs samples, but without reaching significance (Figure S8C).

Similarly, b-diversity was not significantly influenced by vitamin

D intake (Figure S8D).

DISCUSSION

Microbiome composition and function significantly differed

across disease subtypes, responded differently to DMTs, and

were modestly associated with diet. We found that the microbial

composition was to a lesser extent associated with factors such

as geographic location, age, sex, and BMI. The influence of other

confounding factors was reduced by our paired household

design, thereby potentially enhancing power to identify MS-

associated microbial features. In addition to confirming and ex-

tending previous reports (Berer et al., 2017; Cekanaviciute et al.,

2017; Chen et al., 2016a; Cox et al., 2021; Jangi et al., 2016), this

work provides a large reference dataset that can be used to un-

derstand microbial variation across individuals with MS, disease

subtypes, and in response to different therapeutic interventions.

Consistent with earlier studies, we found no difference of a-di-

versity between MS patients and healthy individuals (Berer et al.,

2017; Cekanaviciute et al., 2017; Jangi et al., 2016). However, in
3480 Cell 185, 3467–3486, September 15, 2022
contrast to previous studies, we observed a significant differ-

ence of b-diversity in disease status (regardless of treatment sta-

tus). Interestingly, there was no difference in b-diversity between

untreated MS and treated MS, potentially indicating that disease

status exerts a stronger effect on gut microbiome than does

treatment (Cox et al., 2021). Overall, our findings revealed a

robust alteration of gut microbial composition related to the dis-

ease and therapy.

While an increase in A. muciniphila has also been reported in

previous studies (Berer et al., 2017; Cekanaviciute et al., 2017;

Cox et al., 2021; Probstel et al., 2020), interpretation of its spe-

cific role remains controversial. A. muciniphila is a mucin-de-

grading bacteria shown to exert pro-inflammatory effects on

T cells in vitro (Cekanaviciute et al., 2017) and to exacerbate

inflammation during infection (Ganesh et al., 2013). Interestingly,

peptides from A. muciniphila have been recently shown to stim-

ulate human myelin autoreactive CD4+ T cell clones, thus sug-

gestingmolecular mimicry is a potential mechanism forMS path-

ogenesis (Wang et al., 2020). However, A. muciniphila has also

been proposed as a contributor to maintaining gut health,

improving glucose homeostasis, increasing gut mucin integrity,

and enhancing effect of checkpoint inhibitor immunotherapy

(Cani and de Vos, 2017; Liu et al., 2019; Routy et al., 2018).

Different functional capabilities across A. muciniphila strains

may affect how these bacteria interact with the host (Becken

et al., 2021; Karcher et al., 2021; Kirmiz et al., 2020). At least

two A. muciniphila strains were identified in our samples with dif-

ferences in their functions such as sulfur metabolism, but none of

them was enriched in MS in our dataset. Through pathway anal-

ysis we found that ‘‘phytate degradation I’’ (PWY-4702) (a cycli-

tols degradation pathway), mainly driven by A. muciniphila, was

significantly increased in untreated MS patients. This pathway

converts phytate into myo-inositol. Phytate is a strong chelator

of divalent minerals such as calcium, magnesium, iron, and

zinc. Previous studies suggested that high levels of iron and

zinc could play a role in MS activity and progression (Ferreira

et al., 2017; Hametner et al., 2013; Sanna et al., 2018), whereas

calcium and magnesium could exert neuroprotective capacities

(Enders et al., 2020; Goldberg et al., 1986). Dietary mineral intake

was no different between MS and healthy controls, but it is still

possible that bacterial pathways (such as phytate degradation)

modulate the bioavailability of these minerals, thus contributing

to disease pathogenesis. Myo-inositol, a simple carbohydrate

produced in the body and available in foods such as fruits and

cereals, is involved in lipid signaling, osmolarity, glucose, and in-

sulin metabolism (Gonzalez-Uarquin et al., 2020) and utilized as

dietary supplementation in different pathological conditions,

including diabetes and metabolic disorders (Pintaudi et al.,

2016; Shokrpour et al., 2019). Interestingly, a very early study

showed that patients with MS appeared to metabolize myo-

inositol abnormally (Holm, 1978), and administered myo-inositol

was shown to have a positive effect on evoked potential re-

sponses in MS (n = 9) and controls (n = 9) (Young et al., 1986).

The role of Akkermansia in myo-inositol metabolism needs to

be further elucidated.

R. torques is another potent mucus degrader and may

decrease gut barrier integrity (Cani, 2014; Rajilic-Stojanovic

and de Vos, 2014). A recent study showed that R. torques was
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associated with an enhanced MRI T2 signal in multiple motor

brain areas and exacerbated disease in an animal model of

amyotrophic lateral sclerosis (ALS) (Blacher et al., 2019).

R. lactatiformans, a lactate-producing species, was previously

associated with an increased Expanded Disability Status Scale

(EDSS) and decreased lower extremity motor function in

RRMS and PMS (Cox et al., 2021).

Overall, seven species were significantly reduced in un-

treated MS. F. prausnitzii, one of the main butyrate producers

found in the intestine, has anti-inflammatory properties that

were partly associated with secreted metabolites that block nu-

clear factor kB (NF-kB) activation, interleukin-8 (IL-8) produc-

tion, and upregulate regulatory T cell production (Lopez-Siles

et al., 2017). It can also attenuate the severity of inflammation

through release of metabolites that enhance intestinal barrier

function (Carlsson et al., 2013; Martin et al., 2015). The pyru-

vate-producing carboxylates metabolism pathways, contrib-

uted by F. prausnitzii, were found to be significantly reduced

in untreated MS patients. Altogether, we found a depletion of

potentially beneficial bacteria in untreated MS patients

compared with healthy controls, which in turn disturbed key

metabolic pathways that might be expected to worsen the

inflammation of MS. These findings could lead to the develop-

ment of ‘‘designer probiotics’’ that can restore the healthy

composition and function of the gut microbiome.

We next tested whether these altered bacteria also

associated with disease severity and found that only

S. thermophilus, Azospirillum sp. 47_25, and Rhodospirillum

sp. UNK.MSG-17 were. However, correlations were positive

for RRMS and negative for PMS patients. This implies that

the change of gut microbial community may be linked to the

onset of disease and stabilized during the disease course, a hy-

pothesis that requires further investigation by longitudinal

studies. Several other species were found to be correlated

exclusively with MS severity (e.g., not with disease status).

For example, Butyrivibrio, Clostridium, and Ruminococcus spe-

cies, which are SCFA producers, correlated with lower MS

severity in PMS. It’s well known that SCFAs play a critical

role in immunoregulation with well-characterized anti-inflamma-

tory effects on both epithelium and peripheral immune cells.

This implies potentially beneficial effects of these bacteria by

producing anti-inflammatory metabolites. On the other hand,

C. aerofaciens, a species showed to increase disease severity

in collagen-induced arthritis mice (Chen et al., 2016b), was

associated with a higher MSSS in RRMS patients probably

via the pathway ‘‘PWY-4981: L-proline biosynthesis II (from

arginine).’’ Prevotella species such as P. buccalis, P. corporis,

P. disiens, and P. copri were associated with higher MSSS.

Although Prevotella species have been associated with

health-beneficial properties, several studies have shown asso-

ciations with autoimmune diseases, insulin resistance and dia-

betes, and gut inflammation (Leite et al., 2017; Pedersen et al.,

2016; Scher et al., 2013). Intriguingly, we found pathway ‘‘PWY-

5097: L-lysine biosynthesis VI,’’ a decreased pathway in MS

versus HHCs, was associated with a lower disease severity.

Several commensal bacteria participants in this pathway,

including Bacteroides, Faecalibacterium, and Eubacterium spe-

cies. L-lysine has been shown to have anti-inflammatory in rat
with chronic lung injury (Zhang et al., 2019) and may play a neu-

roprotective role in intracerebral hemorrhage injury (Cheng

et al., 2020), thus suggesting a potential usage of L-lysine to

suppress the disease progression. Based on these observa-

tions, we speculate that the role of gut bacteria in disease pro-

gression/severity is multi-faceted and individual dependent.

The use of DMTs resulted in a decrease in the relative abun-

dance of specific taxa that are not MS associated, potentially

by their innate antimicrobial properties (Maier et al., 2018;

Storm-Larsen et al., 2019). Specifically, Bacteroides, Blautia,

and Clostridium species were significantly reduced in response

to oral medications, and species like F. prausnitzii, Dialister in-

visus CAG:218, and R. intestinalis were reduced in individual

receiving injectables. Furthermore, infused therapies resulted

in a decrease ofBifidobacterium adolescentis, which was shown

to promote Th17 cell accumulation and exacerbated autoim-

mune arthritis in a mouse model, arguing for its pathological

relevance (Tan et al., 2016). On the other hand, we found

several species that were increased by DMTs, in particular

R. lactatiformans and R. torques (with fingolimod), Eubacterium

hallii (with GA) and Bacteroides uniformis (with IFN). Intriguingly,

sequence-based analysis suggested the oral drug fingolimod

would induce the most metabolic changes compared with other

medications, a finding validated by metabolomic analysis. Spe-

cifically, the depletion of microbial ‘‘CARBOXYLATES-DEG’’

pathways (which produces pyruvate) may explain the low level

of pyruvate observed in feces and serum samples from

RRMS patients treated with fingolimod, and the depletion of

F. prausnitzii (a major SCFA-producing bacteria) could account

for the lower levels of acetate and propionate found in MS. We

also found that several microbe-derived fecal metabolites were

remarkably lower in treated RRMS patients, implying a particu-

larly important effect of these medications, likely through direct

interactions with gut microbiota. Of interest, a significant in-

crease of serum propionic acid was found in RRMS patients

treated with IFN. Propionate supplementation in MS patients

has been associated with an increased Treg/Th17 ratio, leading

to long-term clinical improvement (Duscha et al., 2020). Based

on our findings, we propose the increased absorption of micro-

bially derived propionate via upregulation of the SCFA trans-

porter MCT1 (SLC16A1) as contributing mechanism of action

for IFN-b. Our results provide compelling evidence that DMTs

have considerable effects on gut microbiota, not only composi-

tionally but functionally, that may highlight therapeutic mecha-

nisms requiring further investigation. Additional larger and longi-

tudinal follow-up studies will help to evaluate these effects more

precisely.

A healthier diet associates with higher microbial diversity, but

diet may not the only factor at play. Some bacteria remained

unaffected by dietary change depending on host phenotype

and the preexisting microbiota composition (Flandroy et al.,

2018). In addition, local environment (i.e., air, soil, and water)

could also influence diversity of the gut microbiota by horizontal

transmission of environmental microbes (Tasnim et al., 2017).

Vitamin D deficiency has long been associated with MS, and

higher levels of vitamin D were associated with reduced clinical

activity in established MS (Munger and Ascherio, 2011). Unsur-

prisingly, we observed that MS patients took more vitamin D
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but showed no significant influence on gut microbiome

composition.

Limitations of the study
Shotgun metagenomics sequencing was limited to �500,000

reads per sample. While this coverage is adequate to classify

bacterial communities with higher resolution that 16S RNA

gene sequencing, and to provide some insight into themetabolic

potential of the communities, higher sequencing depth will be

needed to resolve most strains, clades, and DNA polymor-

phisms. We cannot exclude power limitations due to stratifica-

tion by treatment. As a consequence of the paired household

design, the majority of the pairs are spouses, thus leading to

an uneven sex distribution of MS (69.4% of the MS participants

are female, in keeping with the expected demographics for MS

[Langer-Gould et al., 2013]). However, our model adjusted for

the effect of sex on gut microbiome.

In summary, this is a large, multi-center gut microbiome study

in MS patients and HHC. The findings strongly support the pres-

ence of specific gut microbiome associations both with MS dis-

ease course and progression and functional changes in

response to treatment. The origin and biological relevance of

these associations remain to be elucidated. Nevertheless, our

study supports the possibility that microbial manipulation and di-

etary intervention could be used as preventive and therapeutic

strategies in MS.
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MagAttract PowerSoil DNA EP Kit QIAGEN 27100-4-EP

Kapa Illumina Library Quantification Kit Roche 07962428001

Pico Green Quantification Kit Invitrogen/Thermo P11496

Deposited data

Raw microbiome data This paper ENA: ERP115476

Code used for data analysis This paper https://github.com/BaranziniLab/iMSMS_study

Dryad datasets, supplementary data I-VI.

Code used for data analysis

This paper https://doi.org/10.7272/Q60C4T26

Web of Life Knight Lab https://biocore.github.io/wol/

Software and algorithms

R The R foundation https://www.r-project.org/

SHOGUN Knight lab https://github.com/knights-lab/SHOGUN

QIITA Knight lab N/A

QIIME2 Knight lab https://qiime2.org/

SPOKE Baranzini lab https://spoke.ucsf.edu/

MetaCyc (Caspi et al., 2016) https://metacyc.org/

KEGG (Kanehisa and Goto, 2000) https://www.kegg.jp/

MetaboAnalyst 5.0. (Pang et al., 2021) https://www.metaboanalyst.ca/

HUMAnN2 (Franzosa et al., 2018) https://pypi.org/project/humann2/
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Sergio E.

Baranzini (Sergio.Baranzini@ucsf.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
Shotgun and 16S rRNA amplicon sequencing datasets generated from human fecal DNAs are available in the EMBL-ENA repository

with accession number ERP115476. See Table S1 for a complete list of sequenced samples. Processed data for 16S rRNA, meta-

genomics and metabolomics profiles, clinical data and diet data are available at Dryad (https://doi.org/10.7272/Q60C4T26). All orig-

inal code is available at https://github.com/BaranziniLab/iMSMS_study. Any additional information required to reanalyze the data

reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Recruitment and inclusion criteria
A total of 576 MS patients and their HHCs were included in this study. See Table S1 for phenotypes of all participants. The first 128

MS-control pairs were recruited as Cohort 1(The iMSMS Consortium, 2020) and the subsequent 448 pairs were recruited as

the Cohort 2. Participants were recruited through MS clinics at UCSF (San Francisco, CA), Brigham and Women’s Hospital
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(Boston, MA), Mount Sinai (New York, NY), the Anne Rowling Clinic (Edinburgh, UK), University of Pittsburgh (Pittsburgh, PA), Bio-

donostia Health Research Institute (San Sebastián, Spain) and FLENI (Buenos Aires, Argentina).

Inclusion criteria required that participants carry a diagnosis of MS; (McDonald et al., 2001) be of White (Hispanic or non-Hispanic)

ethnicity (i.e. to match characteristic genetic risk profile of MS (Baranzini and Oksenberg, 2017)); and be enrolled with a genetically un-

related household control with cohabitation for at least six months. Exclusion criteria for MS and control subjects included the presence

of other autoimmunedisorders, gastrointestinal infections, and other neurological disorders. Participantswere excluded if they received

oral antibiotics within the past three months, corticosteroids within the past 30 days, or were on a DMT for less than three months.

Ethics approval and consent to participate
Each collaborating site obtained human subject research approval through their respective ethics review committees, following a

master protocol established at UCSF (protocol no. 15-17061). All participants provided written informed consent and signed a

HIPAA Authorization allowing for the use of their medical record for research purposes.

METHOD DETAILS

Specimen collection
Participants were provided with a stool sample collection kit and instructed to obtain two consecutive stool samples in the privacy of

their own homes. Each stool sample time point included 3 collection vials - a Q-tip (Q, dry), a snap frozen vial (S, wet), and a vial filled

with Luria-Bertani broth and 30% glycerol. Participants were instructed to freeze the samples for at least 12 h and ship them frozen

with the ice pack included in the kit. Samples were returned to each site via overnight shipping in a thermal envelope. Blood samples

were collected at the initial visit only and stored at�80�Cupon further processing. All participants were required to complete a clinical

survey to report the disease status and treatment, and a subject survey to report demographic, medication, lifestyle and physiology

factors. Clinical outcomes included the EDSS, (Kurtzke, 1983) and the Multiple Sclerosis Functional Composite (MSFC). (Fischer

et al., 1999) All data were collected and stored through secure REDCap questionnaires.

Stool sample preparation and 16S rRNA sequencing
For the first cohort, Q-tip samples (i.e. dry) and snap frozen (i.e. wet) samples were processed using the QIAamp PowerFecal DNA Kit

(ref 12830-50). After lysis solution was added to bead beating tubes, dry samples were transferred by grinding the Q-tips into the

bottom while snap frozen samples were chipped to an appropriate size for the kit. Sample processing was done on a QIAcube plat-

form according to the protocols generated by the manufacturer (QIAGEN). DNA sample quantity and purity were measured by

NanoDrop spectrophotometry (Thermo Scientific). The second cohort samples were processed using the MagAttract PowerSoil

DNA EP Kit (ref 27100-4-EP). After lysis solution was added to the bead beating plate, samples were added to each well in in the

same manner used previously for bead beating tubes. Physical lysis was executed using a mixer mill and subsequent steps were

automated using the EpMotion platform. Sample quality and quantity were assessed with the same method used for the first cohort.

To test whether the DNA processing method changes microbial composition, we extracted DNAs from the same 20 samples using

both QIAcube and epMotion platforms. A subset of 40 samples prepared in Cohort 1 were re-sequenced in Cohort 2 to test the

impact of sequencing runs on microbial composition. As the impact of sample collection method on microbial composition is negli-

gible, (The iMSMS Consortium, 2020) sequencing counts of samples from each participant were summed. ASVs were filtered to

retain only the ones covering at least 10 total reads and present in at least 5% of samples for downstream analyses (Table S4).

Microbial diversity
Both weighted and unweighted UniFrac (Lozupone and Knight, 2005) distances were computed between all samples (Table S4), and

PCoA was applied to visualize the b-diversity. All these analyses were performed with QIIME2. Bray-Curtis (Bray JR, 1957) dissim-

ilarities were calculated to compare gut microbiome among individuals in terms of geographic distance. Since the MS and control

subjects within household are often of different sex, the random comparisons between households utilized only cross-sexual com-

parisons to control for the effect of gender. Statistical significance was determined by ANOVA. The PERMANOVA test (McArdle and

Anderson, 2001) was used to assess the effect of host metadata categories (confounders): demography, lifestyle, diseases, medi-

cation and physiology, on the variation of microbiome abundance (Table S4). The test was performed by using the ‘‘adonis’’ function

implemented in R package vegan (Zapala and Schork, 2006) and tested on weighted UniFrac distances of paired MS and HHC sam-

ples with reported host factors. The variance of microbial abundance betweenMS and control or between treated/untreated MS and

controls were tested by specifying ‘‘strata’’ as household to control the within house comparison. The empirical p value was obtained

by running 999 permutations. When appropriate, statistical p values were adjusted by FDR.

Shallow whole metagenome shotgun sequencing (WMGS) and data processing
For samples with less than 1 ng DNA, a maximum volume of 3.5 mL input was used. Library concentration was determined with trip-

licate readings of the Kapa Illumina Library Quantification Kit (cohort 1, ref 07962428001) or Pico GreenQuantification Kit (cohort2, ref

P11496); 20 fmol of sample libraries were pooled and size selected for fragments between 300 and 800 bp on the Sage Science

PippinHT to exclude primer dimers.
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Demultiplexed shallow shotgun metagenomic sequences were processed using Atropos (v1.1.24) (Didion et al., 2017) to remove

adapters (forward ‘‘GATCGGAAGAGCACACGTCTGAACTCCAGTCAC’’, reverse ‘‘GATCGGAAGAGCGTCGTGTAGGGAAAGGA

GTGT’’) and filter reads with lower quality score than 15 and length less than 80 base pairs. For taxonomic assignment reads

were aligned to the Web of Life (Zhu et al., 2019) of 10,575 bacterial and archaeal genomes using SHOGUN (Hillmann et al.,

2018) in the Bowtie2 alignment mode. Species-level functional profiling was performed using HUMAnN2 default. (Franzosa et al.,

2018) Sequencing counts of samples from each participant were summed (Table S5). To deal with sparse microbial data in the anal-

ysis, we focused on species present in at least 5%of samples, covering at least 10 total reads. This provided a list of 1,677 species for

use in the statistical analysis. The relative abundances of gene families were characterized from UniProt Reference Clusters

(UniRef90) using HUMAnN2 (V2.8.2), (Franzosa et al., 2018) which were further mapped to microbial pathways and high-classes

based on pathway hierarchy from the MetaCyc metabolic pathway database. (Caspi et al., 2016, 2018) 490 pathways present in

at least 5% of samples were retained for statistical analysis. Microbial gene families present in more than 5% samples were used

to link with select fecal metabolites. The phylogenetic diversity of A. muciniphila was measured using MIDAS (Nayfach et al.,

2016) with its default parameters.

Microbial co-abundance network
Significant co-abundance was controlled at FDR 0.05 level using 1003 permutation (Table S6). In each permutation, the abundance

of each microbial factor was randomly shuffled across samples. To keep the co-abundances with high correlations in a dense mi-

crobial network, we filtered co-abundances with a lower absolute correlation than 0.4 and subnetworks with only two species.

To test whether the microbial co-abundance relationships showed case or control specificity, i.e. whether the effect size of co-

abundance in MS group was very different from that in healthy control, we applied the IQR (interquartile ranges) based the outlier

detectionmethod as adapted in paper (Chen et al., 2020). The effect size for co-abundance wasmeasured by the SparCC correlation

coefficient in our analysis. The effect sizes were ranked from low to high and extracted corresponding 25%, 50 and 75% quartile

values (Q1, Q2 and Q3, respectively). IQR was then calculated as Q3-Q1. The specific co-abundance was defined in each corre-

sponding MS or healthy group if the effect size fell outside of Q1 � 2 3 IQR (smallest) or Q3 + 2 3 IQR (largest).

Metabolite measurement in stool and serum samples
Blood samples were centrifuged at 2200g for 20 min. The serum layers were aspirated and moved into 2mL cryovials. The serum

samples were stored at�80�Cbefore metabolomics profiling. Fecal (150g/sample) and serum (150ul/sample) samples were shipped

on dry ice to Metabolon Inc. (Durham, North Carolina) and maintained at �80�C until processed following their published protocols

(Evans et al., 2009; Long et al., 2017; McMurdie et al., 2022).

Global metabolomic profiling
Samples were prepared using the automated Micro-Lab STAR system from Hamilton Company. Several recovery standards were

added prior to the first step in the extraction process for QC purposes. To remove protein, dissociate small molecules bound to pro-

tein or trapped in the precipitated protein matrix, and to recover chemically diverse metabolites, proteins were precipitated with

methanol under vigorous shaking for 2 min (Glen Mills GenoGrinder, 2000) followed by centrifugation. The resulting extract was

divided into five fractions: two for analysis by two separate reverse phase (RP)/UPLC-MS/MS methods with positive ion mode elec-

trospray ionization (ESI), one for analysis by RP/UPLC-MS/MS with negative ion mode ESI, one for analysis by HILIC/UPLC-MS/MS

with negative ion mode ESI, and one sample was reserved for backup. Samples were placed briefly on a TurboVap (Zymark) to re-

move the organic solvent. The sample extracts were stored overnight under nitrogen before preparation for analysis.

Samples were analyzed by Metabolon, Inc. Several types of controls were analyzed in concert with the experimental samples: a

pooled matrix sample generated by taking a small volume of each experimental sample (or alternatively, use of a pool of well-char-

acterized human plasma) served as a technical replicate throughout the dataset; extracted water samples served as process blanks;

and a cocktail of QC standards that were carefully chosen not to interfere with the measurement of endogenous compounds were

spiked into every analyzed sample, allowed instrument performance monitoring and aided chromatographic alignment. Instrument

variability was determined by calculating the median relative SD(RSD) for the standards that were added to each sample prior to in-

jection into the mass spectrometers. Overall process variability was determined by calculating the median RSD for all endogenous

metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples. Experimental samples were randomized

across the platform run with QC samples spaced evenly among the injections.

All methods utilized aWaters ACQUITY ultra-performance liquid chromatography (UPLC) and a Thermo Scientific Q-Exactive high

resolution/accurate mass spectrometer interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer

operated at 35,000 mass resolution. The sample extract was dried then reconstituted in solvents compatible to each of the four

methods. Each reconstitution solvent contained a series of standards at fixed concentrations to ensure injection and chromato-

graphic consistency. One aliquot was analyzed using acidic positive ion conditions, chromatographically optimized for more hydro-

philic compounds. In this method, the extract was gradient eluted from aC18 column (Waters UPLCBEHC18-2.13 100mm, 1.7 mm)

using water and methanol, containing 0.05% perfluoropentanoic acid (PFPA) and 0.1% formic acid (FA). Another aliquot was also

analyzed using acidic positive ion conditions, however it was chromatographically optimized for more hydrophobic compounds.

In this method, the extract was gradient eluted from the same afore mentioned C18 column using methanol, acetonitrile, water,
Cell 185, 3467–3486.e1–e7, September 15, 2022 e3
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0.05% PFPA and 0.01% FA and was operated at an overall higher organic content. Another aliquot was analyzed using basic nega-

tive ion optimized conditions using a separate dedicated C18 column. The basic extracts were gradient eluted from the column using

methanol and water, however with 6.5mM Ammonium Bicarbonate at pH 8. The fourth aliquot was analyzed via negative ionization

following elution from a HILIC column (Waters UPLC BEH Amide 2.1 3 150 mm, 1.7 mm) using a gradient consisting of water and

acetonitrile with 10mM Ammonium Formate, pH 10.8. The MS analysis alternated between MS and data-dependent MSn scans us-

ing dynamic exclusion. The scan range varied slighted between methods but covered 70–1000m/z. Raw data files are archived and

extracted as described below.

Raw data was extracted, peak-identified andQCprocessed usingMetabolon’s hardware and software. These systems are built on

a web-service platform utilizing Microsoft’s.NET technologies, which run on high-performance application servers and fiber-channel

storage arrays in clusters to provide active failover and load-balancing. Compounds were identified by comparison to library entries

of purified standards or recurrent unknown entities. Metabolon maintains a library based on authenticated standards that contains

the retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all molecules

present in the library. Furthermore, biochemical identifications are based on three criteria: retention index within a narrow RI window

of the proposed identification, accurate mass match to the library +/� 10 ppm, and the MS/MS forward and reverse scores between

the experimental data and authentic standards. The MS/MS scores are based on a comparison of the ions present in the experi-

mental spectrum to the ions present in the library spectrum. While there may be similarities between these molecules based on

one of these factors, the use of all three data points can be utilized to distinguish and differentiate biochemicals. More than 3300

commercially available purified standard compounds have been acquired and registered into LIMS for analysis on all platforms

for determination of their analytical characteristics. Additional mass spectral entries have been created for structurally unnamed bio-

chemicals, which have been identified by virtue of their recurrent nature (both chromatographic and mass spectral). These com-

pounds have the potential to be identified by future acquisition of a matching purified standard or by classical structural analysis.

A variety of curation procedures were carried out to ensure that a high-quality dataset was made available for statistical analysis

and data interpretation. TheQC and curation processes were designed to ensure accurate and consistent identification of true chem-

ical entities, and to remove those representing system artifacts, mis-assignments, and background noise. Metabolon data analysts

use proprietary visualization and interpretation software to confirm the consistency of peak identification among the various samples.

Library matches for each compound were checked for each sample and corrected if necessary.

Targeted short-chain fatty acid profiling
Human feces and human serum samples are analyzed for eight SCFAs: acetic acid (C2), propionic acid (C3), isobutyric acid (C4),

butyric acid (C4), 2-methyl- butyric acid (C5), isovaleric acid (C5), valeric acid (C5), and caproic acid (hexanoic acid, C6), with the

addition of lactic acid by request, by LC-MS/MS (Metabolon Method TAM135: ‘‘LC-MS/MS Method for the Quantitation of SCFA

(C2 to C6) in Human Feces’’ and TAM148: ‘‘LC-MS/MS Method for the Quantitation of SCFA (C2 to C6) in Human Plasma and

Serum’’). Human feces and human serum samples are spiked with stable labeled internal standards and are homogenized and sub-

jected to protein precipitation with an organic solvent. After centrifugation, an aliquot of the supernatant is derivatized. The reaction

mixture is diluted, and an aliquot is injected onto an Agilent 1290/AB Sciex QTrap 5500 LC MS/MS system equipped with a C18

reversed phase UHPLC column. The mass spectrometer is operated in negative mode using electrospray ionization (ESI). The

peak area of the individual analyte product ions is measured against the peak area of the product ions of the corresponding internal

standards. Quantitation is performed using a weighted linear least-squares regression analysis generated from fortified calibration

standards prepared immediately prior to each run. LC-MS/MS raw data are collected using AB SCIEX software Analyst 1.6.2 and

processed with SCIEX OS-MQ software v1.7.

Differential microbiome features by mixed linear regression analysis
Globalmetabolite intensity and SCFA concentration were normalized by log transformation. Mixed linear regressionmodel was applied

on transformed data to identify differential features (species, pathways and metabolites) by adjusting random effects of house and

recruitment site, and fixed effects of age, sex and BMI. The linear regression was performed using lmer function from R package

‘‘lme4’’ as lmer(y� disease + age + BMI + sex + (1|site) + (1|house)). To reduce the effect of zero-inflation inmicrobiome data, a variance

filtering stepwas applied to remove species features with very low variance (<13 10�5). The contribution of individual species in a spe-

cific pathway was visualized in a bar plot using HUMAnN2 ‘‘humann2_barplot’’ function. Altered metabolites were linked to gut mi-

crobes through reactions (MetaCyc and KEGG) mediated by microbial gene families screened in our WGMS data using

HUMANnN2. Functional KEGG enrichment analysis of metabolites was performed using MetaboAnalyst 5.0 (Pang et al., 2021).

To identify species associated with disease severity, the updated global Multiple Sclerosis Severity Score (uGMSSS) was calcu-

lated by combining the EDSS and disease duration using global_msss function fromRpackage ‘‘ms.sev’’. We focused on the species

with prevalence in more than 50% samples, spearman correlations were calculated and tested adjusting for age and BMI using

pcor.test function from R package ‘‘ppcor’’.

Diet analysis
A validated Block 2005 FFQ (Block, 2005) was set up through an external vendor (NutritionQuest). The intake of foods and nutrients

were measured by NutritionQuest in a standardized fashion for all participants based on their responses to the FFQ. 37 nutrient items
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were summarized and grouped as antioxidants, average intake, B vitamins, food group servings and minerals (Table S2). Dietary

dissimilarity was measured using Jaccard distance of the nutrient intake. The effect of confounders on the variation of diet and

the effect of dietary items (covariates) on the variation of gut microbiomewere accessed by PERMANOVA (Permutational multivariate

ANOVA) (McArdle and Anderson, 2001). The test was performed by using the ‘‘adonis’’ function implemented in R package vegan

(Zapala and Schork, 2006). The empirical p value was obtained by running 999 permutations. Healthy Eating Index-2015 (HEI-

2015 (Krebs-Smith et al., 2018)) was used for evaluation of the diet quality and calculated by NutritionQuest (Table S3). The HEI-

2015 adequate dietary components include ‘total fruit’, ‘whole fruit’, ‘total vegetables’, ‘greens and beans’, ‘whole grains’, ‘dairy’,

‘total protein’, ‘seafood and plant proteins’, and ‘fatty acids’, which are recommended to be high in a healthy diet. In contrast, mod-

erate dietary components where consumption is recommended to be limited include ‘refined grains’, ‘sodium’, ‘added sugar’ and

‘saturated fatty acids’ (Krebs-Smith et al., 2018). Each component was measured by a maximum point scale. To make all compo-

nents comparable with maximum point of 10, the points of ‘total fruit’ and ‘whole fruit’ were added as ‘fruit’, ‘total vegetables’

and ‘greens and beans’ were added as ‘vegetables’, ‘total protein’ and ‘seafood and plant proteins’ were added as ‘protein’. Cor-

relation between HEI-2015 and host phenotypes (age and BMI), microbial diversity or microbial relative abundance wasmeasured by

Pearson’s correlation. Correlations between each dietary component and MS associated species were measured by coefficients

from mixed linear regression model adjusted for age, BMI, sex and recruiting site. Difference of healthy eating index and dietary

component points between HHC and MS were tested using paired T-test.

QUANTIFICATION AND STATISTICAL ANALYSIS

Details on statistical tests, n numbers, and significance cutoffs can also be found in the figure legends. PCoA of weighted

UniFrac community distance were computed by disease status, treatment status and disease subtype. R2 and FDR adjusted

p values were obtained by PERMANOVA. Effect size (Adonis R2) of confounders significantly associated with gut microbial var-

iations were shown by weighted UniFrac distance, PERMANOVA (FDR adjusted p < 0.05). Community distance of RRMS sub-

jects treated and untreated, and their corresponding HHCs were analyzed by PCoA of weighted UniFrac (p values obtained by

PERMANOVA).

Mixed linear regression models adjusted for age, BMI, sex, recruiting site and house were used for metagenomics species

adjustment for host factors; to define metagenomic pathways altered in untreated MS, untreated RRMS or untreated PMS versus

their HHCs; to identify dominant microbial species contributing to ‘‘PWY-4702’’ and ‘‘GALACT-GLUCUROCAT-PWY’’ pathways;

to identify metagenomics species and metabolic pathways altered in untreated and treated RRMS; to identify pathways altered in

untreated and treated RRMS, and to identify the linear coefficient for 31 microbe-derived metabolites and 8 SCFAs analyzed in

untreated and treated RRMS in both stool and serum. Spearman correlations (adjusted for age and BMI) were computed between

species and pathways with MS severity scores in untreated RRMS patients (n = 112) or untreated progressive MS (n = 97). Cohort

specific analysis (quantile range outlier) was used to characterize disease status specific co-abundance species in untreated MS

and HHCs.

A mixed linear regression model adjusted for age, BMI, sex and recruiting site was also used for identifying correlations between

dietary component and MS-associated species. Pearson’s correlation was computed between HEI and microbial a-diversity in

healthy and MS individuals, as well as with species significantly correlated with HEI. Jaccard dissimilarity was used to show effect

size (Adonis R2) of confounders associated with dietary variations. Differences in HEI and dietary intake between MS patients and

their HHCs were evaluated by paired T-test.

Disease duration-adjusted MS severity score (gMSSS) was compared between untreated and treated RRMS by ANOVA. Paired

T-test were used to show Arcsine square-root transformed relative abundance of A. muciniphila and F. prausnitzii that participate in

phytate degradation I pathway (PWY-4702) and superpathway of hexuronide and hexuronate degradation pathway, respectively.

When relevant, further details are found in the method details for the specific measurement in the context of describing sample

collections. Analytical methods that were described in the Method details are provided again here.

Microbial diversity
Both weighted and unweighted UniFrac (Lozupone and Knight, 2005) distances were computed between all samples (Table S4), and

PCoA was applied to visualize the b-diversity. All these analyses were performed with QIIME2. Bray-Curtis (Bray JR, 1957) dissim-

ilarities were calculated to compare gut microbiome among individuals in terms of geographic distance. Since the MS and control

subjects within household are often of different sex, the random comparisons between households utilized only cross-sexual com-

parisons to control for the effect of gender. Statistical significance was determined by ANOVA. The PERMANOVA test (McArdle and

Anderson, 2001) was used to assess the effect of host metadata categories (confounders): demography, lifestyle, diseases, medi-

cation and physiology, on the variation of microbiome abundance (Table S4). The test was performed by using the ‘‘adonis’’ function

implemented in R package vegan (Zapala and Schork, 2006) and tested on weighted UniFrac distances of paired MS and HHC sam-

ples with reported host factors. The variance of microbial abundance betweenMS and control or between treated/untreated MS and

controls were tested by specifying ‘‘strata’’ as household to control the within house comparison. The empirical p value was obtained

by running 999 permutations. When appropriate, statistical p values were adjusted by FDR.
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Shallow whole metagenome shotgun sequencing (WMGS) data processing
Demultiplexed shallow shotgun metagenomic sequences were processed using Atropos (v1.1.24) (Didion et al., 2017) to remove

adapters (forward ‘‘GATCGGAAGAGCACACGTCTGAACTCCAGTCAC’’, reverse ‘‘GATCGGAAGAGCGTCGTGTAGGGAAAGGA

GTGT’’) and filter reads with lower quality score than 15 and length less than 80 base pairs. For taxonomic assignment reads

were aligned to the Web of Life (Zhu et al., 2019) of 10,575 bacterial and archaeal genomes using SHOGUN (Hillmann et al.,

2018) in the Bowtie2 alignment mode. Species-level functional profiling was performed using HUMAnN2 default (Franzosa et al.,

2018). Sequencing counts of samples from each participant were summed (Table S5). To deal with sparse microbial data in the anal-

ysis, we focused on species present in at least 5%of samples, covering at least 10 total reads. This provided a list of 1,677 species for

use in the statistical analysis. The relative abundances of gene families were characterized from UniProt Reference Clusters

(UniRef90) using HUMAnN2 (V2.8.2), (Franzosa et al., 2018) which were further mapped to microbial pathways and high-classes

based on pathway hierarchy from the MetaCyc metabolic pathway database. (Caspi et al., 2016, 2018) 490 pathways present in

at least 5% of samples were retained for statistical analysis. Microbial gene families present in more than 5% samples were used

to link with select fecal metabolites. The phylogenetic diversity of A. muciniphila was measured using MIDAS (Nayfach et al.,

2016) with its default parameters.

Microbial co-abundance network
Significant co-abundance was controlled at FDR 0.05 level using 1003 permutation (Table S6). In each permutation, the abundance

of each microbial factor was randomly shuffled across samples. To keep the co-abundances with high correlations in a dense mi-

crobial network, we filtered co-abundances with a lower absolute correlation than 0.4 and subnetworks with only two species.

To test whether the microbial co-abundance relationships showed case or control specificity, i.e. whether the effect size of co-

abundance in MS group was very different from that in healthy control, we applied the IQR (interquartile ranges) based the outlier

detection method as adapted in paper (Chen et al., 2020). The effect size for co-abundance wasmeasured by the SparCC correlation

coefficient in our analysis. The effect sizes were ranked from low to high and extracted corresponding 25%, 50 and 75% quartile

values (Q1, Q2 and Q3, respectively). IQR was then calculated as Q3-Q1. The specific co-abundance was defined in each corre-

sponding MS or healthy group if the effect size fell outside of Q1 � 2 3 IQR (smallest) or Q3 + 2 3 IQR (largest).

Global metabolomic profiling analysis
Samples were analyzed by Metabolon, Inc. Several types of controls were analyzed in concert with the experimental samples: a

pooled matrix sample generated by taking a small volume of each experimental sample (or alternatively, use of a pool of well-char-

acterized human plasma) served as a technical replicate throughout the dataset; extracted water samples served as process blanks;

and a cocktail of QC standards that were carefully chosen not to interfere with the measurement of endogenous compounds were

spiked into every analyzed sample, allowed instrument performance monitoring and aided chromatographic alignment. Instrument

variability was determined by calculating the median relative SD(RSD) for the standards that were added to each sample prior to in-

jection into the mass spectrometers. Overall process variability was determined by calculating the median RSD for all endogenous

metabolites (i.e., non-instrument standards) present in 100% of the pooled matrix samples. Experimental samples were randomized

across the platform run with QC samples spaced evenly among the injections.

All methods utilized a Waters ACQUITY UPLC and a Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer

interfaced with a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at 35,000 mass resolution.

The sample extract was dried then reconstituted in solvents compatible to each of the fourmethods. Each reconstitution solvent con-

tained a series of standards at fixed concentrations to ensure injection and chromatographic consistency. One aliquot was analyzed

using acidic positive ion conditions, chromatographically optimized for more hydrophilic compounds. In this method, the extract was

gradient eluted from a C18 column (Waters UPLC BEH C18-2.1 3 100 mm, 1.7 mm) using water and methanol, containing 0.05%

perfluoropentanoic acid (PFPA) and 0.1% FA. Another aliquot was also analyzed using acidic positive ion conditions, however it

was chromatographically optimized for more hydrophobic compounds. In this method, the extract was gradient eluted from the

same afore mentioned C18 column using methanol, acetonitrile, water, 0.05% PFPA and 0.01% FA and was operated at an overall

higher organic content. Another aliquot was analyzed using basic negative ion optimized conditions using a separate dedicated C18

column. The basic extracts were gradient eluted from the column using methanol and water, however with 6.5mM Ammonium Bi-

carbonate at pH 8. The fourth aliquot was analyzed via negative ionization following elution from a HILIC column (Waters UPLC

BEH Amide 2.1 3 150 mm, 1.7 mm) using a gradient consisting of water and acetonitrile with 10mM Ammonium Formate, pH

10.8. The MS analysis alternated between MS and data-dependent MSn scans using dynamic exclusion. The scan range varied

slighted between methods but covered 70–1000 m/z. Raw data files are archived and extracted as described below.

Raw data was extracted, peak-identified andQCprocessed usingMetabolon’s hardware and software. These systems are built on

a web-service platform utilizing Microsoft’s.NET technologies, which run on high-performance application servers and fiber-channel

storage arrays in clusters to provide active failover and load-balancing. Compounds were identified by comparison to library entries

of purified standards or recurrent unknown entities. Metabolon maintains a library based on authenticated standards that contains

the retention time/index (RI), mass to charge ratio (m/z), and chromatographic data (including MS/MS spectral data) on all molecules

present in the library. Furthermore, biochemical identifications are based on three criteria: retention index within a narrow RI window

of the proposed identification, accurate mass match to the library +/� 10 ppm, and the MS/MS forward and reverse scores between
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the experimental data and authentic standards. The MS/MS scores are based on a comparison of the ions present in the experi-

mental spectrum to the ions present in the library spectrum. While there may be similarities between these molecules based on

one of these factors, the use of all three data points can be utilized to distinguish and differentiate biochemicals. More than 3300

commercially available purified standard compounds have been acquired and registered into LIMS for analysis on all platforms

for determination of their analytical characteristics. Additional mass spectral entries have been created for structurally unnamed bio-

chemicals, which have been identified by virtue of their recurrent nature (both chromatographic and mass spectral). These com-

pounds have the potential to be identified by future acquisition of a matching purified standard or by classical structural analysis.

A variety of curation procedures were carried out to ensure that a high quality dataset was made available for statistical analysis

and data interpretation. TheQC and curation processeswere designed to ensure accurate and consistent identification of true chem-

ical entities, and to remove those representing system artifacts, mis-assignments, and background noise. Metabolon data analysts

use proprietary visualization and interpretation software to confirm the consistency of peak identification among the various samples.

Library matches for each compound were checked for each sample and corrected if necessary.

Targeted short-chain fatty acid profiling analysis
The peak area of the individual analyte product ions is measured against the peak area of the product ions of the corresponding in-

ternal standards. Quantitation is performed using a weighted linear least-squares regression analysis generated from fortified cali-

bration standards prepared immediately prior to each run. LC-MS/MS raw data are collected using AB SCIEX software Analyst 1.6.2

and processed with SCIEX OS-MQ software v1.7.

Differential microbiome features by mixed linear regression analysis
Global metabolite intensity and SCFA concentration were normalized by log transformation. Mixed linear regression model was

applied on transformed data to identify differential features (species, pathways and metabolites) by adjusting random effects of

house and recruitment site, and fixed effects of age, sex and BMI. The linear regression was performed using lmer function from

R package ‘‘lme4’’ as lmer(y � disease + age + BMI + sex + (1|site) + (1|house)). To reduce the effect of zero-inflation in microbiome

data, a variance filtering step was applied to remove species features with very low variance (<1 3 10�5). The contribution of indi-

vidual species in a specific pathway was visualized in a bar plot using HUMAnN2 ‘‘humann2_barplot’’ function. Altered metabolites

were linked to gut microbes through reactions (MetaCyc and KEGG) mediated by microbial gene families screened in our WGMS

data using HUMANnN2. Functional KEGG enrichment analysis of metabolites was performed using MetaboAnalyst 5.0.(Pang

et al., 2021)

To identify species associated with disease severity, the uGMSSS was calculated by combining the EDSS and disease duration

using global_msss function from R package ‘‘ms.sev’’. We focused on the species with prevalence in more than 50% samples,

spearman correlations were calculated and tested adjusting for age and BMI using pcor.test function from R package ‘‘ppcor’’.

Diet analysis
A validated Block 2005 FFQ (Block, 2005) was set up through an external vendor (NutritionQuest). The intake of foods and nutrients

weremeasured by NutritionQuest in a standardized fashion for all participants based on their responses to the FFQ. 37 nutrient items

were summarized and grouped as antioxidants, average intake, B vitamins, food group servings and minerals (Table S2). Dietary

dissimilarity was measured using Jaccard distance of the nutrient intake. The effect of confounders on the variation of diet and

the effect of dietary items (covariates) on the variation of gut microbiomewere accessed by PERMANOVA (Permutational multivariate

ANOVA) (McArdle and Anderson, 2001). The test was performed by using the ‘‘adonis’’ function implemented in R package vegan

(Zapala and Schork, 2006). The empirical p value was obtained by running 999 permutations. Healthy Eating Index-2015 (HEI-

2015 (Krebs-Smith et al., 2018)) was used for evaluation of the diet quality and calculated by NutritionQuest (Table S3). The HEI-

2015 adequate dietary components include ‘total fruit’, ‘whole fruit’, ‘total vegetables’, ‘greens and beans’, ‘whole grains’, ‘dairy’,

‘total protein’, ‘seafood and plant proteins’, and ‘fatty acids’, which are recommended to be high in a healthy diet. In contrast, mod-

erate dietary components where consumption is recommended to be limited include ‘refined grains’, ‘sodium’, ‘added sugar’ and

‘saturated fatty acids’ (Krebs-Smith et al., 2018). Each component was measured by a maximum point scale. To make all compo-

nents comparable with maximum point of 10, the points of ‘total fruit’ and ‘whole fruit’ were added as ‘fruit’, ‘total vegetables’

and ‘greens and beans’ were added as ‘vegetables’, ‘total protein’ and ‘seafood and plant proteins’ were added as ‘protein’. Cor-

relation between HEI-2015 and host phenotypes (age and BMI), microbial diversity or microbial relative abundance wasmeasured by

Pearson’s correlation. Correlations between each dietary component and MS associated species were measured by coefficients

from mixed linear regression model adjusted for age, BMI, sex and recruiting site. Difference of healthy eating index and dietary

component points between HHC and MS were tested using paired T-test.
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Supplemental figures

Figure S1. Experimental impacts on gut microbial composition, related to Figure 1

(A) Pearson’s correlation of microbial abundance measured in 40 samples repeatedly sequenced in two cohorts.

(B) Boxplot of microbiome a-diversity measured by Shannon index in two cohort samples (only one sample with fewer than 10,000 reads was dropped, ANOVA,

not significant).

(C) PCoA of weighted UniFrac community distance by sequencing cohorts.

(D) Pearson’s correlation of microbial abundance measured by 16S rRNA sequencing in 20 samples with DNA isolated from QiaCube or pMotion platforms.

(E) Boxplot of microbiome a-diversity measured by Shannon index in QiaCube and epMotion samples (ANOVA, not significant).

(F) PCoA of weighted UniFrac community distance by DNA isolation methods. The repeated samples were connected by a dashed line (R2 and p value were

tested by PERMANOVA).
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Figure S2. Host factors analysis, related to Figure 1
(A) Microbiome a-diversity measured by Chao1 index of 16S rRNA sequencing data in MS versus HHCs (ANOVA, not significant).

(B) Microbiome a-diversity compared in untreated MS versus their HHCs, treated MS vs their HHCs, and untreated MS versus treated MS (ANOVA, not

significant).

(C) Microbiome a-diversity compared across recruitment sites stratified by disease status (ANOVA, *FDR <0.05, **FDR< 0.01, ***FDR< 0.001).

(D) PCoA of weighted UniFrac community distance by recruitment site (PERMANOVA).

(E and F) Distribution of participants in each recruitment site by smoking (E) and education (F) status.

(G) Distribution of participants with depression, anxiety, and taking over-the-counter or prescription medications (Fisher exact test, ***P < 0.001).

ll
Article



Figure S3. MS-associated metagenomic pathways, related to Figure 3

(A) Metabolic pathway classes of gut microbiome annotated in each group.

(B) PCoA of Bray-Curtis community distance of metagenomic functional pathways in untreated RRMS versus HHCs (left) and untreated PMS versus HHCs(right).

Statistical test by PERMANOVA.

(C and D) Dominant microbial species contributing to ‘‘PWY-4981’’ and ‘‘PWY-5097’’ pathways in untreated MS patients and household healthy controls.
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Figure S4. Clustering of 2,913 Akkermansia muciniphila genes in 58 samples annotated by MIDAS, related to Figure 3

Blue squares indicate that a gene is present, and yellow squares indicate that a gene was absent. Function was annotated for the genes missing in cluster2.
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Figure S5. Microbial co-abundance in untreated MS and HHCs, related to Figure 4

(A) Normalized centrality distribution of species-species co-abundance networks constructed in untreated MS and household healthy controls (HHCs) by setting

correlation cutoff from 0.1 to 1 (SparCC, FDR < 0.05).

(B) Microbial co-abundance network built in healthy (left, 773 species, 5688 co-abundances) and untreated MS individuals (right, 786 species, 6742 co-abun-

dances) by SparCC |r| R 0.4 and FDR <0.05 after adjusting age, sex and BMI. Each node indicates a species and color indicates the family classification. Each

edge represents one species-species co-abundance relationship and labeled in green for positive correlation, red for negative correlation.

(C) Overlapped counts of species and co-abundances in untreatedMS andHHCmicrobial networks (SparCC |r|R 0.4, FDR < 0.05 adjusted for age, sex andBMI).
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(legend on next page)

ll
Article



Figure S6. Treatment-associated metagenomic changes, related to Figure 5

(A) Metagenomics species (B) metabolic pathways altered in treated RRMS versus untreated RRMS.

(C) Metabolic pathways altered in treated and untreated RRMS compared to their respective HHCs. Statistics by mixed linear regression model adjusted for age,

BMI, sex, recruiting site and house. *p < 0.05, **p < 0.01, ***p < 0.001 and linear coefficient R upper 5% or coefficient % lower 5%.

ll
Article



Figure S7. Dietary pattern and gut microbes, related to Figure 7

(A) Pearson’s correlation of body mass index or age with HEI in MS and HHC group, respectively.

(B) Jaccard dissimilarity of dietary components measured between healthy control and MS within the same house, between different houses from the same site

and between different houses from different sites. Random comparisons of healthy control andMSwere female-male matched only to control sex effect (ANOVA,

*FDR % 0.05, ***FDR % 0.001).

(C–E) Healthy eating index compared among education, smoke status and sex groups in MS and HHCs, respectively (ANOVA, *FDR % 0.05, **FDR % 0.01,

***FDR % 0.001).

(F) Metagenomic species were significantly associated with diet in healthy controls by mixed linear regression model adjusted for age, BMI, sex, and recruiting

site. *p < 0.05, **p < 0.01, ***p < 0.001 and linear coefficient R upper 5% or coefficient % lower 5%.
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Figure S8. Minerals, vitamin D, and gut microbes, related to Figure 7

(A) Mineral intake from diet between MS and HHCs. No significant differences were detected by mixed linear regression model, adjusting for age, body mass

index and sex.

(B) Vitamin D intake compared between MS and HHCs. ***p < 0.001, statistics by paired T-test.

(C) Pearson correlation between vitamin D intake and Shannon diversity in MS and HHC, respectively.

(D)Weighted UniFrac distance based b-diversity measured in healthy control andMS patients. Each participant was colored by vitamin D intake (IU). Statistics by

PERMANOVA.
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