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Changes in the biochemical wiring of oncogenic cells drives

phenotypic transformations that directly affect disease outcome.

Here we examine the dynamic structure of the human protein

interaction network (interactome) to determine whether changes

in the organization of the interactome can be used to predict

patient outcome. An analysis of hub proteins identified inter-

modular hub proteins that are co-expressed with their interacting

partners in a tissue-restricted manner and intramodular hub

proteins that are co-expressed with their interacting partners

in all or most tissues. Substantial differences in biochemical

structure were observed between the two types of hubs.

Signaling domains were found more often in intermodular hub

proteins, which were also more frequently associated with

oncogenesis. Analysis of two breast cancer patient cohorts

revealed that altered modularity of the human interactome

may be useful as an indicator of breast cancer prognosis.

Transcriptome analyses have been extensively applied as molecular
diagnostic and prognostic tools in breast cancer. Recently, the prog-
nostic predictive performance of gene expression signatures has been
improved by incorporating interactome data1, suggesting that altered
gene expression in breast cancer might disturb the higher-level
organization of the interactome and affect disease outcome.

To investigate this possibility, we first identified proteins that
have many interacting partners (so called ‘hubs’) in a network of
protein-protein interactions curated from the literature and high-
throughput sources2 (Supplementary Fig. 1a online). Next, we
obtained genome-wide expression data measured in 79 human
tissues3, and quantified the extent to which a hub and its interacting
partners were co-expressed in the same tissues (Supplementary
Methods online). We used the average Pearson correlation coefficient
(PCC) of co-expression of a hub protein and its partners to identify
whether interactions are context specific (that is, interacting proteins
are not always co-expressed) or constitutive (that is, interacting
proteins are always co-expressed). This revealed a multi-modal dis-
tribution that appeared to be the superposition of distinct populations

of hubs centered over increasing average PCC values (Fig. 1a, red
asterisks). Randomly reassigning the expression data to different gene
products in the same network resulted in an approximately normal
distribution of PCC values (Fig. 1a, black dashed line). The shoulder
(marked with a black asterisk) is largely due to strongly correlated
gene products that have a high probability of reforming interactions
with their true interactors when randomized (data not shown). We
observed a similar multi-modal distribution using a literature-curated
source alone4 (Supplementary Fig. 1b) or a different high-confidence
human PPI database5 (Supplementary Fig. 1c).

The human interactome thus has two classes of hubs. One class
displays low correlation of co-expression with its partners. We call
these hubs intermodular hubs, as first proposed for the yeast inter-
actome6,7. A second class, termed intramodular hubs, displays more
highly correlated patterns of co-expression (Fig. 1a). These features
reflect a modular architecture. Restricting the analysis to interactions
conserved between yeast and humans revealed a single peak at high
average PCC, suggestive of largely intramodular hubs (Fig. 1b).
Previous analyses showed that the assembly of intramodular hubs
into macromolecular complexes constrains intramodular hub evolu-
tion6. This is visualized as a cluster of highly correlated interactions
interconnecting intramodular hubs in the human interactome (Sup-
plementary Fig. 1a; green edges between blue nodes).

Modular structure can confer higher-order function to inter-
actomes, such that intermodular hubs provide temporally and
spatially restricted linkages to intramodular hubs that in turn
fulfill specific functions, often as multi-subunit macromolecular
machines8,9. For example, most components of the 26S proteasome
show highly correlated expression and function together to mediate
protein degradation (Supplementary Fig. 2a online). However, three
hub components (PSMB1, PSMB2 and PSMD9) are intermodular,
reflecting tissue-specific modulation of the proteasome10,11. Using the
Gene Ontology (GO) molecular function database12, we found that
intramodular hubs shared more functional similarity with their
partners than did intermodular hubs (Student’s t-test, P o 0.02,
Supplementary Fig. 2b).
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Intermodular hubs have been proposed to be critical for global
network connectivity7. We tested this by systematically removing
either intermodular or intramodular hubs from the interaction net-
work and analyzing the number of paths between nodes using a
topological measure known as ‘betweenness’13. Betweenness measures
information flow through networks, with high betweenness reflecting
multiple paths between nodes and low betweenness few paths. In a
biological context, betweenness measures the ways in which signals
can pass through the interaction network. Betweenness was more
strongly affected by removing inter- rather than intramodular hubs
(Fig. 1c). Another topological measure of global network connectivity
is the characteristic path length (CPL), which is the average of the

shortest path between all nodes in a network14. Systematic removal of
intermodular hubs increased CPL to a threshold beyond which CPL
rapidly collapsed due to splintering of the large network into small
subnetworks (Fig. 1d). In contrast, intramodular hub removal only
increased CPL. The greater sensitivity of both betweenness and CPL to
removal of intermodular hubs is consistent with the notion that the
human interactome is modular with intermodular hubs connecting
functional modules that are comprised of intramodular hubs.

Next, we asked whether hub types display characteristic biochemical
features. We found that intermodular hubs were larger than intra-
modular hub proteins (Mann-Whitney U-test, P o 0.005, Supple-
mentary Fig. 3a online). Analysis of domain numbers (modularity)
and size (globularity) revealed intermodular hubs have more domains
compared to a randomized distribution, whereas intramodular hubs
have fewer domains than expected by chance (P o 0.05 and P o 0.01
respectively, Fig. 2a). Conversely, intramodular hubs have greater
globularity (domain size) and intermodular hubs less (P o 0.05 and
P o 0.01, respectively, Fig. 2b). Linear motifs (that is, post-transla-
tional modifications and short binding motifs15) are over- and under-
represented in intermodular and intramodular hubs, respectively
(P o 0.005, Fig. 2c; Supplementary Fig. 3b).

We then explored domain types in the different hub classes. Cell
signaling domains (as defined by the SMART database16) were
enriched in intermodular hubs (sign test, P o 0.001), whereas
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Figure 1 Evidence of dynamic network modularity in the human

interactome. (a) The probability density of the average PCC of co-expression

for human hub proteins with their interactors across 79 human tissues (red

line) is compared to randomized data (dashed black line). (b) Same as (a)

but only using human hub proteins conserved in yeast (red line) compared

to randomized data (dashed black line). (c) Network betweenness as a

function of removing equivalent numbers of intermodular or intramodular

hubs. (d) Characteristic path length of the network as a function of removing
equivalent numbers of intermodular or intramodular hubs.

15 5

4

3

2

Fr
eq

ue
nc

y 
(1

03 )

1

0

5

4

3

2

Fr
eq

ue
nc

y 
(1

03 )

1

0

5

4

3

2

Fr
eq

ue
nc

y 
(1

03 )

1

0

5

4

3

2

Fr
eq

ue
nc

y 
(1

03 )

1

0

Intermodular: modularity Intermodular: globularity Intermodular: linear motifs

Intramodular: modularity Intramodular: globularity Intramodular: linear motifs

Only in
intermodular Intermodular

enriched
Intramodular

enriched

Only in
intramodular

Intermodular enriched Intramodular enriched

1

0

G
α

P
D

Z

H
2B

C
U

B

S
N

A
R

E

el
F

2

Z
nF

T
M

do
m

ai
n

P < 0.001

Ty
r

ki
na

se

H
E

C
T

–1

1

0

–1

Fr
eq

ue
nc

y
(s

ig
na

lin
g 

do
m

ai
ns

)
Fr

eq
ue

nc
y

(n
on

si
gn

al
in

g 
do

m
ai

ns
)

P < 0.02 P < 0.03 P < 0.004

P < 0.02
P < 0.002

P < 0.004

1.7 1.8 1.9 2.0
Mean domains/hub

2.1 2.2 400 420 440
Amino acids/domain

460 480 500 0.6 0.8
Mean motifs/hub

Mean domains/hub Amino acids/domain Mean motifs/hub

1.0 1.2 1.4 1.6

360 380 400 420 440 0.6 0.8 1.0 1.2 1.4 1.6

10

5

Fr
eq

ue
nc

y 
(1

03 )

0

15

10

5

Fr
eq

ue
nc

y 
(1

03 )

0
1.6 1.7 1.8 1.9 2.0

a b c d

Figure 2 Structural and functional features of intermodular and

intramodular hubs. (a) Mean modularity (number of different domains/

protein) from observed intermodular hubs (red line) or intramodular hubs

(blue line) versus a distribution of randomized samples (black). (b) Mean

globularity (sequence length of domains) found in observed intermodular or

intramodular hubs compared to randomized distributions. (c) Mean number of experimentally validated linear motifs and phosphosites from the ELM and

Phospho-ELM database in intermodular or intramodular hubs compared to randomized distributions. (d) Domain distribution between intermodular hubs and

intramodular hubs. The frequency of individual domains in intermodular hubs minus their frequency in intramodular hubs was plotted for each of the signaling
domains (top panel, orange bars) or non-signaling domains (bottom panel, green bars), as indicated. A frequency of 1 indicates domains are found exclusively

in intermodular hubs, whereas a frequency of –1 indicates exclusively intramodular hubs. Note that to retain legibility only a fraction of nonsignaling domains

are labeled.
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nonsignaling domains were evenly distributed between the hub types
(Fig. 2d). For example, tyrosine kinase, PDZ and Ga domains were
found predominantly or exclusively in intermodular hubs (Fig. 2d).
The two hub types have similar degree distributions (that is, number
of interactions per hub; Supplementary Fig. 4 online), indicating that
the biochemical attributes of hub proteins are an inherent property of
the hub type and are not a function of the number of interacting
partners. Taken together, these results indicate that intra- and inter-
modular hubs display distinctive structural characteristics consistent
with their roles in organizing communication and function of
dynamic protein networks.

To explore this in detail we examined the well-characterized RAS
subnetwork. RAS behaves as an intramodular hub, with many highly
correlated regulatory partners, such as RALGDS and SOS (Supple-
mentary Fig 5a online). In contrast, partners that employ RAS as an
effector (that is, Insulin receptor adaptor protein, IRS1 (ref. 17)) or a
regulator (that is, BRAF17) tended to be
intermodular. The latter is connected to a
large cluster of intramodular transcription
factors, such as NFkB and p53. Also notable
is that connections between the RAS module
and the downstream intramodular cluster
occur almost exclusively via intermodular
hubs. This suggests a modular assembly of
signaling networks with intermodular hubs
organizing the interconnectivity of functional
modules such as RAS and the downstream
RAS transcriptional effectors.

During tumor progression, rewiring of sig-
naling networks drives phenotypic alterations
while maintaining the robustness of the net-
work8, suggesting that there may be differ-
ences in hub-type association with cancer.
We queried Online Mendelian Inheritance in
Man (OMIM)18, the census of cancer genes19,
and oncogenic translocations and found that
mutations of intermodular hubs were asso-
ciated with cancer phenotypes more fre-
quently than those of intramodular hubs
(Fisher’s exact test, P o 0.05, Supplementary
Figs. 5b,c and 6 online). As intermodular
hubs regulate the global functions of modular
networks, these results suggest that alterations
in network modularity may occur in cancer.

To investigate this we analyzed a well-
described cohort of sporadic, nonfamilial
breast cancer patients20. We first looked for
significant differences in the average PCC of
hub proteins and their interacting partners in
patients who were disease free after extended
follow-up (hereafter referred to as ‘good out-
come’) and those who died of disease (‘poor
outcome’) (Supplementary Fig. 7 online).
This revealed 256 hubs that displayed altered
PCC as a function of disease outcome. One
such hub was BRCA1, a protein that is
mutated in a subset of familial breast cancers.
The expression of BRCA1 was strongly cor-
related with the expression of its partners in
tumors from surviving patients, but not well
correlated with their expression in tumors

from poor-outcome patients (Fig. 3a). In contrast, the transcription
factor Sp1, which shares some interacting partners with BRCA1, was
not significantly changed. Of the BRCA1 partners highly correlated in
good outcome tumors, both MRE11 and BRCA2 were notable as they
are members of the BRCA1-associated genome surveillance complex
(BASC) and are misregulated in poor prognosis breast cancer21,22. Our
results suggest that disorganization of the BASC by loss of coordinated
co-expression of components is associated with poor outcome.

Analysis of interactions between the 256 hub proteins revealed that
they form an interconnected network (Fig. 3b). Notably, we did not
identify hubs that were themselves significantly up or downregulated
in the good versus poor outcome groups, but rather we identified
hubs that had altered PCC of expression between outcome groups
(Supplementary Fig. 7). Of the 256 hubs identified in our study,
only 23% (59 hubs) showed significantly altered expression in our
cohort when analyzed using ‘significance analysis of microarrays’23.
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Figure 3 Differences in dynamic network properties in breast cancer tumors. (a) Network of the

interacting partners of BRACA1 and SP1. BRCA1 and its interactors (e.g., BRCA2 and MRE11, as

indicated) are highly ordered (green edges indicate correlated expression between protein pairs) in

the surviving patients, whereas that organization is lost in patients who die of disease. Interactions

involving Sp1 are not significantly altered. (b) Shown are all hubs (red nodes) that have, as a function

of patient outcome, significantly different correlation of co-expression with their partners. Black edges

connect hubs that have direct protein-protein interactions. Note that most hubs are components of a

an interconnected network. The network includes many functional groups known to be misregulated in
breast cancer pathogenesis (highlighted in legend). Inset shows a subnetwork focused on SRC and its

interactors together with GRB2 and SHC1. Edge colors represent the correlation between SRC and each

of its partners, while node colors represent changes in gene expression between outcome groups. Black

edges indicate interactions not involving SRC. Note that while SRC is not significantly differently

expressed between patient groups, it is a significant predictor hub because of differences in the

coordinated co-expression of SRC and many of its partners.
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For example, no significant difference in the expression level of the
oncogene product SRC was observed between groups (Fig. 3b, inset);
however, the coordinated co-expression of SRC and its regulators or
effectors (see inset Fig. 3b) was clearly affected. Unbiased analysis of
the 256 hubs in this aberrant network demonstrated over-representa-
tion in literature (Fig. 4, Fisher’s exact test, Po0.001) and microarray
studies20,24–26 of breast cancer (Supplementary Fig. 8 online, Fisher’s
exact test, Po0.02) when compared to a similar network that did not
change significantly between groups. These hubs include signaling
proteins (MAP3K1, GRB2, SHC and SRC), an estrogen receptor
(ESR1) and DNA damage response proteins (BRCA1, RAD51,
MRE11). Single-nucleotide polymorphisms in MAP3K1 are associated
with breast cancer susceptibility27. Thus, there are changes in dynamic
network modularity that are associated with poor outcome in breast
cancer, and these may provide a prognostic signature in breast cancer.

To develop a prognostic signature that could be used to classify
gene expression profiles from individual patients, we computed the
relative expression of hubs with each of their interacting partners,
determined for which hubs the relative expression differed signifi-
cantly between patients who survived versus those who died from
disease, and then employed affinity propagation clustering28. Affinity
propagation is a clustering algorithm that takes similarity measures
between data points and iteratively refines them until there are high
quality exemplars. Clustering of test patients using affinity propaga-
tion allowed us to assign a probability of poor prognosis for each
patient (Supplementary Methods and Supplementary Fig. 9 online).
We used a fivefold cross-validation strategy in which the hub selection
process was incorporated on the training set within the cross-
validation loop to avoid overfitting and assessed performance using
receiver operator characteristic (ROC) curves. This revealed a
typical area under the curve (AUC) of 0.711 (Fig. 4a) and accuracy,
sensitivity and specificity of 76%, 86% and 81%, respectively.
This compared favorably with the retrospective29 or prospective30

performance of commercially available genomic breast cancer

diagnostics (53%, 41% and 68% in ref. 30 and 70%, 71% and 67%
in ref. 29 for predicting 10-year survival31).

We also assessed performance using interactomes in which hubs
were randomly removed. We observed that the performance of the
classifier was reduced as hubs were removed (Fig. 4d), indicating that
our accuracy may be limited by the interactome density. As current
interactomes are likely incomplete and contain biases32, further
interactome mapping by systematic approaches may lead to improved
prognostic performance.

To test the ability of the classifier to predict survival, we grouped
patients using the poor outcome probabilities. The threshold for
probability of prognosis was set to 0.4 as this consistently yielded
the highest accuracy of prediction. Analysis of these two groups
revealed significantly different 5-year survival (Mantel-Cox Log
Rank test, nominal P o 0.001). Only 48% of patients possessing
the poor-prognosis modularity signature survived for 45 years
(Fig. 4b). Conversely, 85% of those with a good prognostic signature
survived for 5 years. The average overall error rate of prognosis using
the test-set data at this prognostic cutoff was 29.1%.

We next asked whether prognostic accuracy could be improved by
incorporating clinical data (patient age, tumor stage and tumor
grade). A logistic regression model that incorporated these variables
along with network probabilities resulted in better performance (AUC
¼ 0.784) (Fig. 4a) and enhanced prognostic classification (error rate,
25%) (Fig. 4b). Clinical covariates alone showed similar performance
as the network probability score (AUC ¼ 0.701, Fig. 4a). We also
repeated these analyses using expression data from the TransBIG30

cohort of breast cancer patients and observed similar, if not better,
performance (AUC ¼ 0.718–0.827; Supplementary Fig. 9a online)
and Kaplan-Meier survival curves. Thus, 480% of predicted good-
prognosis patients survived 410 years compared with o35% of those
in the poor-prognosis group (Supplementary Fig. 9b). These results
demonstrate that the molecular changes of the tumor that are
captured by measuring changes in the network modularity of tumor
interactomes are significant and independent predictors of patient
disease outcome and suggest that measuring these changes may
improve the predictive value of prognostic indicators already used
in the clinic.

Previous approaches have employed network information to
improve classification performance of gene signatures by extracting
co-expressed pathways (that is, functional modules) and then using
these pathways to assess cancer outcome1. In contrast, we have
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Figure 4 Dynamic network properties predict breast cancer outcome.

(a) ROC curve of the probabilities for prognostic group membership from

the affinity propagation clustering of patient dynamic network properties

using fivefold cross-validation runs. Outcome prediction performances are

shown for network probabilities alone (blue line), TNM tumor classifications

alone (yellow line) and combining network properties of each tumor and

TNM tumor classifications (red line). Random division of patients is shown

with the black diagonal). (b) Kaplan-Meier disease-free survival curves.
Patients were grouped into good and poor prognostic groups based on a

fivefold cross-validation analysis of patient data. Patient survival is plotted

for network probability alone (green and orange lines, as indicated) or

network probability controlling for clinical covariates (red and blue lines).

(c) Genes encoding hub proteins that are included in the prediction

algorithm are cited significantly more frequently in the breast cancer

literature than excluded hubs. (d) Algorithm performance declines as a

function of decreasing interactome size. Interactions were randomly removed

from the current interactome as indicated and performance of the dynamic

network modularity algorithm assessed. Average AUC (+s.d.) at each of the

reduced interactome sizes is plotted (black squares) and was calculated

from 5-fold cross-validation runs performed in triplicate.
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searched for changes in the global modularity of the human inter-
actome that indicate altered organization and information flow. Other
mechanisms that affect network connectivity, such as alterations in
protein stability and post-translational modification, may also influ-
ence network modularity on a global scale during cancer progression.
Our studies motivate the search for multi-modal therapies that target
hubs in networks that display altered modularity in disease. Further-
more, the favorable performance of our classification algorithms
suggests that changes in network modularity may be a defining feature
of tumor phenotype that, in turn, determines patient prognosis.

METHODS
Data integration to determine PCC of co-expression in interaction net-

works. We used a method analogous to that previously described7. The

complete interactome from OPHID2 as well as subsets of interactions mapped

from yeast to man33 or literature-curated interactions4 were downloaded as well

as expression data from 79 human tissues3. Hubs were defined to be nodes with

more than five interactions, as these proteins are in the top 15% of the degree

distribution of the network. For each hub the average PCC of co-expression for

each interaction and the hub was assessed using a similar algorithm as

previously described7. Random reassignment of the expression values to nodes

in the network was used to ascertain if the observed network was nonrandom.

The network was visualized using Cytoscape 2.5.1 (ref. 34).

Topological network analysis. Betweenness and CPL of networks were

calculated using algorithms implemented by the tYNA web interface13. When

assessing network robustness to hub removal, an equivalent number of

intermodular and intramodular hubs were removed from the network in order

of descending clustering coefficient.

To validate that the two hub classes are distinct, we investigated length,

phosphorylation, linear motifs, globularity, domain architecture (Supplemen-

tary Methods). These were either computed directly from the hub sequence or

by mapping to the appropriate database35. Significance levels were computed

by sampling (Supplementary Methods).

Distribution of hub types by human disease phenotypes. For each hub, gene

entries in OMIM18 were extracted and manually curated for hubs (i) associated

with cancer, malignancy or metastasis and (ii) found to be involved in

oncogenic translocation fusions.

Network analysis between breast tumor samples. To assess differences in

network organization between patients who were alive after extended follow-up

versus those that died from disease, we used a nonparametric algorithm, within

a cross-validation loop, to determine the difference in correlation of co-

expression of hubs with their interactors. First, we calculated the PCC of hubs

and their interactors for each patient group. We then calculated the absolute

value of the difference of these PCCs. The magnitude is the difference in PCC of

a hub between patient groups. To identify hubs that are significantly different

between patient groups, we randomly assigned patients to one of two groups

and repeated the analysis. This was done 1,000 times to calculate the random

distribution. Real PCC differences for hubs between patient groups were

compared to the random distribution to generate P-values. This defines a

network signature of hubs whose modularity is different as a function of disease

outcome. P-value cutoff and degree cutoff for hubs were optimized as a

function of accuracy during cross-validation runs.

To measure prognostic accuracy of this network, we trained an affinity

propagation algorithm28 using the network signature to predict the patient

outcome using fivefold cross-validation. Specifically, we partitioned the patient

cohort into five approximately equally-sized portions, defined a network

signature and trained our algorithm using four of these portions as described

in detail in Supplementary Methods. To test the algorithm, we provided it with

only the gene expression data for patients in this latter hold-out training set and

compared its predictions of clinical outcome with the actual outcomes for these

patients. We repeated this procedure for each hold-out set, amassing outcome

predictions for every patient. To measure the variability in our predictions, we

repeated the fivefold cross-validation procedure three times with different

random partitions of the data.

Breast cancer patient prognostic predictive value is related to the total size of

the protein interaction network. Interactions were randomly removed to obtain

interactomes of reduced size, as indicated. The accuracy of prediction of

outcome using dynamic network modularity at each indicated interactome

size was then assessed by ROC curve analysis and is plotted as the average AUC

(±s.d.) of three runs of fivefold cross-validation.

Kaplan-Meier survival curves were drawn for groups defined by the algo-

rithm using patient survival data and drawn using SPSS for Mac, Rel.14.0.1.

Note: Supplementary information is available on the Nature Biotechnology website.
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