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Cancer genomes contain many aberrant gene fusions—a 
few that drive disease and many more that are nonspecific 
passengers. We developed an algorithm (the concept  
signature or ‘ConSig’ score) that nominates biologically 
important fusions from high-throughput data by assessing  
their association with ‘molecular concepts’ characteristic  
of cancer genes, including molecular interactions, pathways 
and functional annotations. Copy number data supported 
candidate fusions and suggested a breakpoint principle for 
intragenic copy number aberrations in fusion partners. By 
analyzing lung cancer transcriptome sequencing and  
genomic data, we identified a novel R3HDM2-NFE2 fusion  
in the H1792 cell line. Lung tissue microarrays revealed 2 of  
76 lung cancer patients with genomic rearrangement at  
the NFE2 locus, suggesting recurrence. Knockdown of  
NFE2 decreased proliferation and invasion of H1792 cells. 
Together, these results present a systematic analysis of gene 
fusions in cancer and describe key characteristics that assist  
in new fusion discovery.

Gene fusions resulting from chromosomal rearrangements often 
define molecular subtypes of cancers and appear as initial events in 
oncogenesis1. The discovery of recurrent fusions in common epi-
thelial cancers2,3 has stimulated a widespread search for novel gene 
fusions. Yet, new fusion discovery and molecular targeting of known 
fusions is complicated by the complex biological behavior displayed 
by fusion genes. First, most genes involved in fusions recombine with 
many different partners, forming interrelated gene fusion networks4. 
Second, recurrent gene fusions in carcinomas are often found in 
the background of many nonspecific gene fusions, which illustrates 
the karyotypic complexity of solid tumor evolution. Distinguishing 

nonspecific (passenger) fusions from recurrent (driver) fusions is a 
formidable task. In this study, we sought to investigate the functional 
and genetic landscape of fusion genes and characterize fundamental 
principles to help facilitate new gene fusion discovery from large-
scale genomic data and next-generation sequencing data.

RESULTS
Understanding the recombination of fusion partners
To determine common characteristics of fusion gene recombina-
tions, we explored the hypothesis that fusion genes sharing a com-
mon partner might share common domain architectures. Using 
GenBank, we extracted core nucleotide sequences of chimeras rep-
resenting known fusions. Open reading frames and their domain 
architectures were determined using the Entrez Gene conserved 
domain database. The resulting unique domain architectures were 
clustered by domain similarities, enabling the global analysis of 
domain recombination in gene fusions (Supplementary Results). 
Interestingly, the domain architectures of fusion proteins are very 
diverse, especially for 5′ partners. In addition, clustering gene 
fusions according to their domain architectures resulted in few 
pathologically related clusters; the majority of the clusters did not 
show tumor-entity specificity. This suggested the possible existence 
of other major factors influencing fusion gene recombinations, such 
as preferential selection for shared pathways or gene ontologies.

We compiled pathway data from Reactome5, Kyoto Encyclopedia of 
Genes and Genomes (KEGG)6 and Biocarta, and analyzed the shared 
pathways within fusion partner groups. However, most fusion genes 
with a mutual partner are involved in distinct cell signaling pathways 
(data not shown).

Yet, because canonical pathways may not encompass the com-
plexities of cell biology, we interrogated a molecular interaction 
database to generate a comprehensive view of cancer signaling. We 
derived 90 fusion partner groups from the Mitelman database and 
mapped these to the molecular interaction network extracted from 
the Human Protein Reference Database (HPRD)7. For all human 
genes in the database, we defined the interaction gene set J to be all 
genes that interact with gene j. If we denote a given fusion gene and 
its fusion partners as i and I, respectively, we can then individually 
test the significance of overlap between every set of fusion part-
ners I with every gene interaction set J using the hypergeometric 
distribution (Fig. 1a). In aggregate, this analysis yielded a total 

An integrative approach to reveal driver gene fusions 
from paired-end sequencing data in cancer
Xiao-Song Wang1–3, John R Prensner1,3,8, Guoan Chen4,8, Qi Cao1,3, Bo Han1,3, Saravana M Dhanasekaran1,3, 
Rakesh Ponnala1, Xuhong Cao1,3, Sooryanarayana Varambally1,3,5, Dafydd G Thomas3, Thomas J Giordano3, 
David G Beer4, Nallasivam Palanisamy1,3, Maureen A Sartor2, Gilbert S Omenn2 & Arul M Chinnaiyan1–3,5–7

1Michigan Center for Translational Pathology, Ann Arbor, Michigan, USA. 
2National Center for Integrative Biomedical Informatics, CCMB, Ann Arbor, 
Michigan, USA. 3Department of Pathology, University of Michigan, Ann Arbor, 
Michigan, USA. 4Department of Surgery, University of Michigan, Ann Arbor, 
Michigan, USA. 5Comprehensive Cancer Center, University of Michigan Medical 
School, Ann Arbor, Michigan, USA. 6Howard Hughes Medical Institute,  
University of Michigan Medical School, Ann Arbor, Michigan, USA. 7Department 
of Urology, University of Michigan, Ann Arbor, Michigan, USA. 8These authors 
contributed equally to this work. Correspondence should be addressed to  
G.S.O (gomenn@umich.edu) or A.M.C (arul@umich.edu).

Published online 1 November 2009; doi:10.1038/nbt.1584

http://www.nature.com/doifinder/10.1038/nbt.1584


1006	 volume 27  number 11  november 2009  nature biotechnology

A n a ly s i s

of 589 genes whose interacting genes were enriched for genes  
in 33 out of 90 fusion partner groups in the Mitelman database 
(P < 0.01). The top shared interacting genes are supplied in 
Supplementary Results.

To test whether fusion genes are significantly enriched for mutual 
interacting genes, we randomly chose 90 gene sets with an equivalent 
level of connectivity as the fusion partner groups (Online Methods), 
and determined the extent to which they were linked by mutual inter-
acting genes. This process was repeated 1,000 times, and then the total 
number of significant links and the number of gene groups having 
these links were plotted (Fig. 1b). The number of links generated 
is significantly greater for fusion genes, validating our observation  
(P < 0.001).

To systematically evaluate the importance of shared interacting 
genes in fusion gene recombinations, we applied these statistics to the 
pooled domains, pathways, Gene Ontology (GO) database biologi-
cal process and HPRD interactions data. We refer to these data sets 
collectively as ‘molecular concepts’ (Table 1). We benchmarked each 
of these data sets by statistically assessing the number of molecular 
concepts shared by fusion partner groups (Fig. 1c).

We next focused on the network of the most significant 
fusion-interaction (FI) links. We visualized fusion-interaction  
networks using the VisANT program8 and found six major 
clusters of interactions that connected gene fusions from simi-
lar tumor entities (Fig. 1d). The shared interacting genes with  
the greatest statistical significance in each subset of connected 

fusions were designated as ‘fusion-interaction hubs’ in each cluster. 
For example, BCR has four 3′ partners (ABL1, FGFR1, JAK2 and 
PDGFRA), all of which interact with PIK3R1, one of the fifteen subunits 
encoding PI3K (P = 9.54 × 10−11). This finding suggested that BCR 
fusion partners interact with and presumably activate PIK3R1 as 
part of leukemogenesis, which we confirmed by mining the litera-
ture9–14. These results show the utility of the fusion-interaction 
networks in elucidating fusion biology by distinguishing key genes 
that serve as network hubs with functional importance in mediat-
ing fusion signaling (Supplementary Results).

Quantification of concept signatures
The fact that cancer-related fusion partner groups tend to cluster 
around shared interacting genes or share common gene ontologies 
prompted us to generalize this finding to develop a method that could 
filter out nonspecific gene fusions. We hypothesized that such ‘signa-
tures’ of molecular concepts frequently found in fusion genes may be 
used to define biologically meaningful gene fusions underlying cancer, 
similar to signature genes defining certain phenotypes. This requires a 
systematic characterization of all fusion genes as a coherent group from 
multiple functional perspectives.

To benchmark the functional characteristics of fusion genes, we 
compared fusion genes to point mutation genes in cancer. We used 
Fisher’s exact test to identify molecular concepts enriched for fusion 
genes and concepts enriched for point mutations, generating two 
sets of minimally overlapping concepts (Fig. 2a). Fusion genes were 
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Figure 1  Exploring cancer-related gene fusions in the context of known molecular interaction networks. (a) The hypergeometric statistics for  
assessing whether a group of fusion gene partners (e.g., all BCR partners) contains an unexpected number of genes that physically interact with  
the same gene (e.g., all genes that interact with PIK3R1). (b) The total number of significant links (589) and the number of fusion partner groups 
having these links (33) were plotted with the distribution calculated from randomly chosen gene sets with an equal amount of connectivity  
(1,000 permutations). (c) Analysis of the fusion partner groups with a compendium of molecular concepts by hypergeometric statistics. The numbers in 
the pie chart represent the number of significant concepts in each functional category (P ≤ 0.01). (d) Network visualization of the most significant  
(P < 10−7) instances where many fusion partners also interact with a shared gene. Fusion genes are green nodes; shared interacting genes are red  
(with color intensity indicating P-value). Red arrows designate gene fusions (from 5′ partners to 3′ partners); green lines represent molecular 
interactions. For simplicity, genes and proteins are both given in roman type in the diagram. For each fusion partner set, the shared interacting gene 
having the most significant P-value was designated as a fusion-interaction hub. Clusters are limited to known fusions joined by established molecular 
interactions. (i) Acute lymphoblastic lymphoma (ALL) fusions with a hub of GATA3. (ii) Acute/chronic myelogenous leukemia (AML and CML) fusions 
with a hub of MEIS1. (iii) B-cell lymphoma and chronic lymphoblastic lymphoma (CLL) fusions through the hubs of CDK6 and CTNNB1. (iv) AML 
fusions partially focusing on HDAC1; RUNX1 is the hub of immunoglobulin fusions, and also involved in multiple fusions in AML, and thus links 
clusters iii and iv. (v) ALL and CML fusions through the hub of PIK3R1. (vi) Sarcoma and prostate cancer fusions around ERG and MSK1. The 
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enriched for molecular concepts related to signal transduction and 
transcription activation; in contrast, mutation genes were enriched 
for molecular concepts related to DNA repair and cell cycle check-
points. Thus, we defined these two sets as ‘concept signatures’—a 
fusion concept signature and a mutation concept signature.

Using these two concept signatures, we hypothesized that genes 
involved in fusions or point mutations could be distinguished from 
each other and from the remaining human genes. We designed 
an algorithm, termed concept signature score (ConSig score), to 
quantitatively rank genes underlying cancer by the strength of their 
association with the two concept signatures (Fig. 2b). The algo-
rithm first determines the ‘relevance’ of each concept in a signature, 
where relevance is defined as log10 of the number of fusion (or point 
mutation) genes that are associated with that concept divided by 
the square root of the total number of genes in the concept. Then, 
the ‘fusion ConSig score’ of a gene is calculated by summing the 
relevances of the fusion signature concepts associated with the gene, 
normalized for the total number of assigned concepts k. The ‘muta-
tion ConSig score’ is similarly calculated except using the concepts 
in the mutation signature.

An important step in this analysis was to remove the redundant 
information from the calculation of the ConSig score. First, to avoid 
redundant representation in the GO database, we subtracted the genes 
that appeared in the child ontologies from the parents. Second, to 
eliminate the bias from the gene itself in the overlap, we subtracted 
the seeding genes from the signature concepts during the calculation 
of their own ConSig score. Finally, to minimize the redundant infor-
mation in the interactome and pathway databases, we removed the 
pathways significantly overlapping with the molecular interactions 
(Fisher’s exact test, P < 0.01) in the calculation of the ConSig score. 
However, this adjusted ConSig score did not show an advantage over 
the unadjusted score (Supplementary Results).

We calculated fusion and mutation ConSig scores for all known 
human genes. Plotting the fusion and mutation ConSig scores separated 
known fusion genes from mutation genes (Fig. 2c). The distinction line 
(D-line), y = 1.67x, was determined by testing optimal separation capac-
ity, which separates 85% of mutation genes from 80% of fusion genes 
(Supplementary Results). In this setting, the radius to the zero point is 
defined as the radial ConSig score of a gene (r ConSig score), which indi-
cates the strength of association with signature concepts of both fusion 
and mutation genes, thus implies the functional relevance of candidate 
genes in cancer. The distance vector from the node to the D-line, which 
illustrates a distinction between fusion and mutation genes, is defined 
as the distinction ConSig score (dConSig score). Rating all human genes 
by the r ConSig score produced enrichment of established cancer genes 

in top-scoring genes, with the majority of 
fusion or mutation genes matching the pre-
diction from the dConSig score (Fig. 2d).  
Replacing the fusion or mutation gene 
sets with random gene sets produced no 
enrichment of the randomly selected 
genes. Although the ConSig algorithm is 
able to segregate fusion genes and mutation 
genes, we propose that its main utility is in 
the identification of biologically impor-
tant gene fusions from next-generation  
sequencing data, where a large number 
of candidate gene fusions hinders a quick 
discussion evaluation of their functional 
importance (Supplementary Discussion).

Genetic characteristics of unbalanced fusion genes
Having evaluated fusion genes by functional traits, we next used high-
throughput copy number data to explore the genomic imbalance pat-
tern that could inform unidentified gene fusions. Using leukemia 
as a genetic model, we studied the recurrent fusion genes in a high-
resolution single nucleotide polymorphism (SNP) microarray data set 
with 304 leukemia samples15,16. A total of 157 samples are annotated 
with seven gene fusions in this data set (Supplementary Results).  
The percentage of unbalanced fusions ranged from 21.2–94.1% for 
different fusions, with most TCF3-PBX1 fusions identifiable by unbal-
anced breakpoints (Fig. 3a). The physical lengths of amplifications or 
deletions associated with fusion genes were 0.08–84.21 Mb (averaging 
19.7 Mb). We observed a surprising heterogeneity in the genomic 
aberrations generating gene fusions. Often two fusion partners were 
found to possess different degrees of copy number gain or loss; else-
where one fusion partner harbors a balanced translocation whereas 
the other partner has an unbalanced translocation.

Despite this diversity, an association analysis of unbalanced breakpoints 
with fusion gene placements revealed a consistent genetic pattern: copy 
number increases generally affect the 5′ region of 5′ partners and the  
3′ region of 3′ partners, whereas deletions generally remove the 3′ region 
of 5′ fusion partners and the 5′ region of 3′ partners. Of 56 samples with 
7 unbalanced fusions in this data set, 55 samples follow this pattern  
(Fig. 3b and Supplementary Results). We further analyzed the data for  
36 leukemia cell lines15 and associated gene fusions from published 
sources17; 11 of 12 unbalanced fusions from these cell lines were found 
to follow this pattern (Fig. 3c and Supplementary Results). We termed 
this pattern the ‘fusion breakpoint principle’. Based on this reasoning, we 
can deduce an inferred principle for the unbalanced gene fusions within 
the same chromosome (Supplementary Results). For gene fusions having 
two partners on the same DNA strand, we define the fusion as ‘consistent’ 
if the genomic location of the two partners parallels their positions within 
the fusion transcript (that is, 5′ partner at the 5′ side of the 3′ partner), or 
‘inconsistent’ if the two partners display the opposite genomic positioning 
(that is, 5′ partner at the 3′ side of the 3′ partner). Then, consistent fusions 
cannot be generated by a copy number increase, whereas inconsistent 
fusions cannot be generated by a deletion. For gene fusions having two 
partners on different strands (inversion), the fusion cannot be generated 
by simple interstitial deletions or copy number increases.

Although the fusion breakpoint principle can be inferred based 
on conventional cytogenetics analysis, it should be stressed that 
unlike G-banding and fluorescence in situ hybridization (FISH), 
array-based high-throughput genomic data loses balanced genomic 
translocation information, and may misrepresent individual cases 
of complex genomic rearrangements (Supplementary Results on 

Table 1  The compendia of molecular concepts for integrative functional analysis of fusion 
genes

Class Source Web link Type
Concepts 

(n)
Connectivity  

(n)

Annotation Gene Ontology http://www.geneontology.org/ Biologic process 3,920 46,530

Cellular component 732 42,463

Molecular function 2,561 47,026

Pathways Biocarta http://cgap.nci.nih.gov/Pathways Signaling pathways 263 4,459

KEGG http://www.genome.jp/keg Metabolic pathways 112 2,985

Reactome http://www.reactome.com/ Signaling pathways 2,456 52,238

Biochemical reactions 5,450 44,347

Interactions HPRD http://www.hprd.org/ Protein interaction sets 7,819 37,206

Domains Entrez Gene http://www.ncbi.nlm.nih.gov/gene Conserved domains 5,650 5,693

Four classes of molecular concepts were compiled from six sources. Connectivity represents the total number of concept 
to gene connections in each concept type.
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the MLL-AF9 fusion). For this reason, extensive evidence from large 
numbers of malignancies is required to confirm the applicability of 
this principle to high-throughput genomic data.

To confirm the breakpoint principle, we performed a large-scale 
meta-analysis of recurrent gene fusions based on high-resolution 
array comparative genomic hybridization (array-CGH) and SNP 
array data sets annotated with gene fusions, as well as literature 
curation (Supplementary Results). In total, 276 tumor samples 
were identified as having unbalanced fusions, including 85 leuke-
mia, 15 lymphoma, 23 sarcoma and 153 epithelial tumor samples. 
Although diverse breakpoint patterns were observed on these 
samples (Supplementary Results), the unbalanced fusions from  
273 samples conformed to the principle (98.9%). Furthermore, we 

also confirm the inferred principle by analyzing the reports for all 
unbalanced intrachromosome fusions from the Mitelman database 
(Supplementary Results).

An integrative approach to new fusion discovery
To demonstrate the application of those principles to new fusion dis-
covery, we analyzed next-generation sequencing data and large-scale 
genomic data from lung cancer. First, we used the ConSig score to 
nominate biologically important fusion candidates from paired-end 
transcriptome data from lung cancer cell lines run in a single lane 
on an Illumina Genome Analyzer II flow cell. We extracted the chi-
meric paired reads from the paired-end libraries, and then ranked 
the 3′ partners by r ConSig score. Second, the DNA breakpoints at 
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Figure 2  Distinguishing biological features of gene fusions and point mutations in cancer. (a) Enrichment analysis with a compendium of molecular 
concepts generates two sets of minimally overlapping signature concepts for fusion and point mutation genes. Molecular concepts are depicted as nodes 
with the size of each node corresponding to the number of genes in each concept. The thickness of the lines correlates with the significance of overlap 
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(c) Fusion and mutation ConSig scores for known fusion genes (red dots), cancer point mutation genes (blue dots) and all other human genes (gray 
dots). Genes known to be both fusion and mutation genes are purple. r, r ConSig score; d, d ConSig score, D-line, distinction line. (d) Identifying the top 
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the genomic loci of top candidate fusion genes were evaluated on 
the basis of the fusion breakpoint principle using publicly available 
lung cancer SNP array data encompassing a large number of tumor 
samples to search for recurrent rearrangements.

We first tested the ConSig approach on the H2228 cell line known 
to harbor the recurrent EML4-ALK fusion. Rating 3′ partners of 
paired-end chimeras by r ConSig score revealed EML4-ALK as the 
top-ranked candidate on the H2228 cell line, which was supported 
by six mate pairs (Fig. 4a, left). This showed the effectiveness of the 
r ConSig score in preferentially nominating driver gene fusions from 
numerous paired-end chimeras.

We then applied this method to reveal driver gene fusions from the 
transcriptome sequencing data of 12 lung cancer cell lines. Although 
there were 530 gene fusions in total supported by more than two 
paired reads, the 3′ r ConSig score prioritized R3HDM2-NFE2 as the 
lead in the H1792 lung cancer cell line (supported by three paired 
reads, Fig. 4a, right), and this fusion was confirmed by quantitative 
RT-PCR (qRT-PCR) (Fig. 4b), conventional capillary sequencing 
and interphase FISH, the latter of which showed high copy number 
gain of R3HDM2-NFE2 in H1792 (Fig. 4c). Consistent with previous 
microarray data on lung cancer cell lines (Supplementary Results), 
qRT-PCR also revealed marked overexpression of NFE2 on H1792 and 

several additional lung adenocarcinoma cell 
lines (Fig. 4b); however, no rearrangements 
were detected in these samples by FISH,  
suggesting other mechanisms activating NFE2 
expression (Supplementary Results).

The R3HDM2-NFE2 fusion was predicted 
to encode the full-length open reading frame 
of NFE2, with only untranslated promoter 
sequences contributed from R3HDM2 (Fig. 
4d), and exon-walking qRT-PCR demon-
strated the specific overexpression of the 
NFE2 coding exons 2–3 under the regula-

tion of the R3HDM2 promoter (Supplementary Results). In H1792, 
knockdown of NFE2, which encodes a transcription factor normally 
expressed during erythropoiesis, resulted in a marked decrease in cell 
proliferation and to a lesser extent cell invasion (Fig. 4e), whereas no 
effect was seen in H460, which has low levels of endogenous NFE2 
(Supplementary Results).

Analysis of SNP array data for 139 lung adenocarcinoma tissues 
revealed copy number gain consistent with the fusion breakpoint 
principle at the 3′ NFE2 locus in two people with lung cancer (Fig. 4f), 
suggesting possible recurrent aberrations involving the NFE2 locus in 
this cancer. We therefore performed FISH analysis on a lung cancer 
tissue microarray comprised of a cohort of 76 lung adenocarcinoma 
samples, which confirmed recurrent NFE2 rearrangements in two 
individuals (Fig. 4g).

DISCUSSION
The complex biological events contributing to tumorigenesis are 
frequently driven by chromosomal rearrangements. Although previ-
ous studies have observed the generation of recurrent fusions at the 
edges of genomic imbalances18, efforts to identify cancer-promoting 
fusions from unbalanced breakpoints have been met with limited 
success, often discovering nonfunctional aberrations that appear to 
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H1792 lung cancer cell line. (b) The R3HDM2-NFE2 fusion was confirmed by RT-PCR and sequencing of the PCR product. qRT-PCR of wild-type 
NFE2 revealed overexpression of NFE2 in a subset of lung cancer cell lines; only H1792 cells express the chimeric R2HDM2-NFE2. (c) Top, schematic 
of the genomic organization of R3HDM2-NFE2 fusion, with red and green bars indicating the location of BAC clones. This fusion was generated by 
an intrachromosomal translocation. Bottom, interphase FISH analysis showing amplification signals of 3′ NFE2 and 5′ R3HDM2 (left, middle) and 
R3HDM2-NFE2 fusion (right) on H1792 cell line. Normal signals are indicated by white arrows; aberrant colocalizing signals by yellow arrows; aberrant 
split signals by green or red signals. (d) Schematic of the R3HDM2-NFE2 fusion mRNA and protein. Structures for the R3HDM2 and NFE2 genes 
are derived from GenBank reference sequences. The numbers above the exons indicate the last base of each exon. Open reading frames are shown in 
darker shades. The exons of R3HDM2-NFE2 fusion are numbered from the original reference sequence. The lower schematic shows wild-type NFE2 
protein and its domain architecture. (e) siRNA knockdown of NFE2 in H1792 cells leads to decreased cell proliferation (middle graph) and invasion 
(right graph). Percent knockdown of the fusion transcript revealed by qRT-PCR is shown in the left graph. (f) Analysis of SNP array data from 139 lung 
adenocarcinoma tissues revealed recurrent copy number aberrations in two patients at the 3′ NFE2 locus, as well as the focal amplification of  
R3HDM2-NFE2 fusion on H1792. (g) As in c, except the data are from three lung adenocarcinoma patients. L41 is a negative case with two 
colocalizing signals; L83 has split and high copy number gain at NFE2 locus; L18 showed one additional 3′ NFE2 signal (red).

Figure 4  Discovery and validation of the R3HDM2-NFE2 fusion using the ConSig algorithm 
and the fusion breakpoint principle. (a) Pair-end transcriptome sequencing of 12 lung cancer 
cell lines, followed by prioritizing the 3′ partners of paired-end chimeras (≥3 paired reads) 
by r ConSig score (red bars). Left, EML4-ALK is a candidate fusion, and is supported by six 
paired reads (black bars), in the H2228 lung cancer cell line (known to harbor this fusion). 
Right, ConSig analysis nominates the R3HDM2-NFE2 fusion as the top candidate in the 
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be biological by-products. This also holds true for next-generation 
sequencing transcriptome data, which routinely generates a large 
number of putative chimeras, most of which are nonfunctional19,20. 
Here, we describe a methodology to nominate biologically important 
fusions from an integrative analysis of next-generation transcriptome 
data and high-throughput genomic data.

By undertaking a comprehensive analysis of the biological asso-
ciations of all genes contributing to gene fusions, we demonstrate 
that, although analysis of domain architectures and shared pathways 
was less informative, cancer-related fusion genes tend to engage dis-
tinct interaction networks or share common gene ontologies. Using 
such information, we generalized this finding to a genomic scale and 
developed an algorithm, ConSig score, to assay the probability that 
any given gene may contribute to a driving gene fusion based on the 
strength of that gene’s association with biological concepts character-
istic of cancer genes. Although ConSig analysis can nominate putative 
cancer genes, the association of a gene with a specific tumor type 
requires additional evidence compiled from other biological data sets. 
To integrate use of high-throughput genomic data, we characterized 
the chromosomal imbalances associated with gene fusions, finding 
that recurrent gene fusions exhibit distinctive patterns of copy number 
alteration corresponding to differential portions of fusion partners. 
To our knowledge, this is the first evidence that integrative bioinfor-
matics may be able to predict which genes are preferentially subject to 
chromosomal rearrangements important in tumorigenesis.

We applied the ConSig score to next-generation sequencing tran-
scriptome data to benchmark fusion candidates, which were then 
assessed for chromosomal aberrations complying with the fusion 
breakpoint principle by integrating high-quality copy number data. We 
found that the ConSig score was able to identify the known EML4-ALK 
fusion as the top-ranked candidate in the H2228 lung cancer cell line, 
and in addition, we found further evidence of a R3HDM2-NFE2 fusion 
in H1792 cell line. We show that the R3HDM2-NFE2 fusion, which 
results in overexpression of wild-type NFE2, promotes cell proliferation 
and invasion. Moreover, through analysis of SNP arrays and lung tissue 
microarrays, we find that chromosomal rearrangements at the NFE2 
locus are recurrent in a small subset of patient tumors, suggesting that 
NFE2 may contribute to a new class of lung cancer molecular biology. 
These data suggest that such approaches may have broad applicability 
to the analysis of multidimensional cancer genomic data.

The methodology described here can filter the large number of fusion 
candidates generated by paired-end next-generation sequencing data 
and preferentially identify driver gene fusions in cancer. The ConSig 
technology suggests the functional importance of putative fusions in 
cancer, whereas the breakpoint principle helps interpret large-scale can-
cer genomic data sets to explore potential recurrence. Although we have 
not applied this methodology to the discovery of novel mutations, we 
hypothesize that a similar computational schematic may yield insights 
in this area as well. Ultimately, we hope that this integrative methodol-
ogy will elucidate key aspects of tumor biology as well as facilitate the 
development of targeted therapy of human cancers.

Methods
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.

Accession code. GenBank: GU068583 for nucleotide sequence of the 
R3HDM2-NFE2 fusion from H1792 cell line.

Note: Supplementary information is available on the Nature Biotechnology website.
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ONLINE METHODS
Sequence and domain analysis. We extracted 3,068,965 mRNA sequences 
from GenBank and mapped them to the human genome by BLAT (Kent, 
2002)21. Sequences that aligned to exon boundaries of two different genes 
were considered fusion chimeras and compared to the Mitelman database of 
known fusions to identify deposited fusion sequences (http://cgap.nci.nih.
gov/Chromosomes/Mitelman). The fusion proteins were delineated based 
on the exon recombination sites and the open reading frames of both part-
ners. The conserved domains in each fusion protein were delineated based on 
the protein-domain mapping data extracted from the Entrez Gene database 
(http://www.ncbi.nih.gov/gene).

Interrogation of the gene-fusion network with the molecular-interac-
tion network. The molecular interactions for human genes were extracted 
from the HPRD database7, a resource that contains expert-curated reference  
protein-protein interactions. The gene fusion network was constructed using 
established fusions from the Mitelman database. We applied hypergeometric 
probabilities to detect the enrichment of gene fusion partners in the molecu-
lar interactions sets. Suppose an interaction gene set for gene j, consisting 
of N interacting genes, and a fusion partner set for gene i, consisting of  
x partners; the intersection of these two sets is calculated as kij. Then, taking 
the complete set of all human genes (size n), the probability that kij is a more 
significant overlap than expected by chance is calculated using the hypergeo-
metric distribution (Fig. 1a). Using these statistics, the gene fusion network 
was interrogated with the molecular interaction network. To evaluate the top 
fusion-interaction network hub candidates, we resolved the fusion-interac-
tion network for shared interacting genes with P < 10−7 (≥3 connectivities 
with a fusion partner group). The fusion-interaction network was visual-
ized by VisANT9 and then processed by the spring embedded relax function. 
The fusion partner groups that fall into the six major clusters were exhib-
ited together with their shared interacting genes on Fig. 1d. The hubs were 
nominated based on the significance from the above statistical test within each 
subset of connected fusions, and ablating drugs were identified by mapping 
the hubs to the DrugBank database (http://www.drugbank.org/) as of August 
8, 2008 (ref. 23).

Enrichment analysis of cancer genes in the compendium of molecular con-
cepts and calculation of the ConSig score. We compiled 28,963 molecular 
concepts from the Gene Ontology database (http://www.geneontology.org/), 
the Reactome database (http://www.reactome.com/), the Kyoto Encyclopedia 
of Genes and Genomes (KEGG) (http://www.genome.jp/kegg/), Biocarta 
(http://cgap.nci.nih.gov/Pathways), the HPRD database7 (http://www.hprd.
org/) and the Entrez Gene conserved domain database (http://www.ncbi.nlm.
nih.gov/gene) (Table 1). In the processing of gene ontologies, the genes that 
appeared in the child ontologies were subtracted from the parents to avoid 
duplicate representation. Next, we mapped and analyzed the enrichment of 
established fusion or point mutation genes against all concepts and calcu-
lated the fusion and mutation ConSig score for all known human genes based 
on their participation in signature concepts. The point mutation genes were 
compiled from the Cancer Gene Census (http://www.sanger.ac.uk/genetics/
CGP/Census/). Computationally, let k be the number of concepts associated 
with a specified gene. Let ni represent the number of total genes and xi repre-
sent the number of fusion or mutation genes participating in a given concept 
i, i = 1,…,k. The ConSig score then integrates a signal measure of fusion or 
mutation genes participating in concept i (xi/ni

0.5) over all possible i, with the 
incorporation of normalization factor for k using the formula: 
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With this computation, if a gene has high probability to be involved in 
gene fusions or mutations, the fusion/mutation ConSig score will be high; 
thus the radius in the two-dimensional ConSig-score plot for fusions and 
mutations will correlate with the role of tested genes in cancer. To elimi-
nate the bias from the gene itself in the overlap, the seeding genes were 
subtracted from the signature concepts during the calculation of their 
own ConSig score.

Kolmogorov-Smirnov analysis for ConSig score. The established cancer genes 
from the Mitelman (http://cgap.nci.nih.gov/Chromosomes/Mitelman) and 
cancer gene consensus databases (http://www.sanger.ac.uk/genetics/CGP/
Census/) were used as a prototype, and compiled into ordered gene lists by 
descending rConSig score. The enrichment of these established cancer genes 
in top scored genes was measured using the Kolmogorov-Smirnov rank sta-
tistic (K-S, P = 1.39e-114). Let X be the number of known cancer genes in 
the ordered gene list (X = 470). Set Y = n/X-1 where n represents the total 
number of human genes interrogated and construct a vector V where V(i) is 
the component corresponding to gene i. Let V(i) = Y if i is in the target gene 
set and V(i) = −X if not. Thus, our K-S statistical score is the maximum value 
of the running sum of consecutive values of V(i).

Random gene set statistics. Randomization tests were performed to evaluate 
the statistical significance of our observations. First, to test whether the fusion 
partner groups are significantly more linked by mutual interacting genes than 
by chance, randomized gene sets were generated with the same gene sizes and an  
equal amount of interacting genes as the fusion partner groups. Fusion genes 
that have fewer than 58 interacting genes will be substituted by genes with the 
same number of interactions; the others will be substituted randomly by genes 
having ≥58 interactions. Then the number of statistically significant links 
generated by the HPRD database were calculated (P < 0.01). This process was 
permutated for 1,000 times; none of the random gene family sets generated 
more significant links than fusion partner groups (P < 0.001). Second, to test 
the significance of ConSig score in isolating known cancer genes, randomized 
gene sets were generated corresponding to the sizes of the fusion and muta-
tion gene lists. Then ConSig scores were calculated as if these random genes 
were actual cancer genes. As above, the K-S score was calculated and recorded. 
This process was repeated ten times for each cancer gene list size, resulting in 
nonsignificant K-S statistical scores, thus validating the K-S score as unbiased 
and providing a null distribution of ConSig score under the null hypothesis 
of no functional signal in the input gene list.

Meta-analysis of public array CGH/SNP data sets for multiple human can-
cers. Public array CGH/SNP data sets were compiled from Gene Expression 
Omnibus (http://www.ncbi.nlm.nih.gov/geo). A total of seven data sets were 
included in this study (GSE4659, GSE8918, GSE7255, GSE9611, GSE9113, 
GSE3930 and GSE8398), covering six cancer types (leukemia, lymphoma, 
sarcoma, salivary adenoma, brain and prostate tumors). The samples from 
each data set were manually curated and classified according to pathological 
associations. For Affymetrix SNP arrays, model-based expression was per-
formed to summarize signal intensities for each probe set using the perfect-
match/mismatch (PM/MM) model. For copy number inference, raw copy 
numbers were calculated for each tumor sample by comparing the signal 
intensity of each SNP probe set against a diploid reference set of samples. In 
two-channel array CGH data sets, the differential ratio between the processed 
testing channel signal and processed reference channel signal was calculated. 
All resulting relative DNA copy number data were log2 transformed, which 
reflects the DNA copy number difference between the testing and reference 
channels. For normalization, log ratios were transformed into a normal distri-
bution with a mean of 0 under the null model assumption. The data were then 
segmented by the circular binary segmentation (CBS) algorithm23. Cutoffs of 
0.3 and −0.4 were used to call amplifications and deletions, respectively. To 
explore the evidence of fusion breakpoint pattern at the NFE2 loci in lung 
cancer, we compiled the SNP array data of lung cancer tissues and cell lines 
from publication24 and array express (E-MTAB-38) respectively. The relative 
copy number data were inferred and segmented as discussed above to reveal 
the DNA breakpoint patterns.

Analysis of paired-end transcriptome sequencing data. Mate pair transcrip-
tome reads were mapped to the human genome (hg18) and Refseq transcripts, 
allowing up to two mismatches, using Efficient Alignment of Nucleotide 
Databases (ELAND) program within the Illumina Genome Analyzer Pipeline. 
Using a Perl script, we parsed the Illumina export output files to identify chi-
merical mate pairs with the following criteria: (a) putative chimeras must be 
supported by at least one mate pair that is the best unique match across genome;  
and at least three mate pairs in total; (b) the distances between the 5′ and 3′ 
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partners of the intrachromosome chimeras must be more than 1 Mb. The 
resultant candidate chimeras were aligned by an rConSig score of 3′ partner 
genes to reveal functionally important gene fusions in lung cancer cell lines.

RT-PCR and sequencing. RNAs from lung cancer cell lines, obtained from 
the American Type Culture Collection, were extracted and reverse transcribed 
with superscript III (Invitrogen) and random primers. Polymerase chain reac-
tion was performed with Platinum Taq High Fidelity and fusion or NFE2 
specific primers for 35 cycles. The primers used in this study are listed in 
Supplementary Results. Products were resolved by electrophoresis on 1.5% 
agarose gels, and TOPO TA cloned into pCR 4-TOPO. Purified plasmid DNA 
from at least four colonies was sequenced bidirectionally using M13 Reverse 
and M13 Forward primers on an ABI Model 3730 automated sequencer at the 
University of Michigan DNA Sequencing Core. Quantitative PCR (qPCR) was 
performed using the Step One Real Time PCR system (Applied Biosystems). The 
amount of each target gene relative to the housekeeping gene glyceraldehyde- 
3-phosphate dehydrogenase (GAPDH) for each sample was determined 
using the comparative threshold cycle (Ct) method (Applied Biosystems 
User Bulletin #2, http://docs.appliedbiosystems.com/pebiodocs/04303859.
pdf). For the experiments presented in Figure 4b, the relative amount of the 
target gene was calibrated to the relative amount from a lung cancer cell line 
with the latest Ct value.

Gene expression data analysis. To determine the expression of R3HDM2 and 
NFE2 in lung cancer cell lines and normal tissues, we interrogated the gene 
expression study of 73 lung cancer cell lines25, and the 40 normal tissue data 
set26, using the Oncomine database (http://www.oncomine.org/)27. Descriptions 
of tissue types from both data sets are provided in Supplementary Results.

Fluorescence in situ hybridization (FISH). To detect possible translocations 
on lung cancer cell lines involving R3HDM2 and NFE2 loci, we used break-
apart and colocalizing probe FISH strategies, with two probes spanning the 
R3HDM2 locus (digoxin-dUTP labeled BAC clone RP11-258J5 (5′ R3HDM2) 
and biotin-14-dCTP labeled BAC clone RP11-799O6 (3′ R3HDM2)) and NFE2 
locus (digoxin-dUTP labeled BAC clone RP11-753H16 (5′ NFE2) and biotin-
14-dCTP labeled BAC clone RP11-621J12 (3′ NFE2)). All BAC clones were 
obtained from the Children’s Hospital of Oakland Research Institute (CHORI). 
Prior to FISH analysis, the integrity and purity of all probes were verified 
by hybridization to metaphase spreads of normal peripheral lymphocytes. 
For interphase FISH on lung cancer cell lines, interphase spreads were pre-
pared using standard cytogenetic techniques. For interphase FISH on a lung 

cancer tissue microarray, tissue hybridization, washing and color detection  
were performed as described28,29. The total evaluable cases include 76 lung 
adenocarcinoma cases. For evaluation of the interphase FISH on the tissue 
microarray, an average of 50–100 cells per case were evaluated for assessment 
of the NFE2 rearrangement. In addition, formalin-fixed paraffin-embedded 
(FFPE) tissue sections from a positive case were used to confirm the tissue 
microarray results.

Small RNA interference, cell proliferation and invasion assays. The NFE2-
fusion-positive H1792 cell line and an H460 cell line with low NFE2 expres-
sion were plated into 10-cm dishes and transfected with siRNA against NFE2 
or nontargeting controls. Transfection was performed with oligofectamine 
following manufacturer’s suggestion (Invitrogen). Forty-eight hours post-
transfection, cells were trypsinized and counted. For each treatment, equal 
amounts of cells were plated into 24-well plates for cell counting, 96-well plates 
for WST-1 assay and Boyden invasion chambers for invasion assay. The rest of 
the cells were harvested for qPCR analysis. The knockdown study on H1792 
cell lines was performed twice.

Cell-counting analysis was performed by Coulter counter (Beckman 
Coulter) at the indicated time points in triplicate. WST-1 proliferation assay 
was performed using manufacturer’s protocol (https://www.roche-applied-
science.com/pack-insert/1644807a.pdf). Invasion assay was performed as 
described previously30.
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