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Chapter 8

Off-Target Networks Derived from Ligand Set Similarity

Michael J. Keiser and Jérôme Hert

Summary

Chemically similar drugs often bind biologically diverse protein targets, and proteins with similar 
sequences or structures do not always recognize the same ligands. How can we uncover the pharmaco-
logical relationships among proteins, when drugs may bind them in defiance of bioinformatic criteria? 
Here we consider a technique that quantitatively relates proteins based on the chemical similarity of their 
ligands. Starting with tens of thousands of ligands organized into sets for hundreds of drug targets, we 
calculated the similarity among sets using ligand topology. We developed a statistical model to rank the 
resulting scores, which were then expressed in minimum spanning trees. We have shown that biologically 
sensible groups of targets emerged from these maps, as well as experimentally validated predictions of 
drug off-target effects.

Key words: SEA, Expectation value, Target network, Polypharmacology, Off-targets

How similar are two proteins? Typically, proteins are compared 
using bioinformatics approaches based on sequence or struc-
ture. While these methods quantify historical protein divergence, 
drugs and other small molecules often bind to targets that are 
unrelated from an evolutionary standpoint (1, 2). For example, 
the enzymes thymidylate synthase, dihydrofolate reductase, and 
glycinamide ribonucleotide formyltransferase have no substantial 
sequence identity or structural similarity but they all recognize 
folic acid derivatives and are inhibited by antifolates. Similarly, 
the drug methadone binds both the m-opioid receptor, a GPCR, 
and the structurally unrelated N-methyl-d-aspartate receptor, an 
ion channel. Polypharmacology, the ability of chemically similar 
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drugs to bind biologically diverse proteins, has inspired recent 
efforts to find protein relationships by means other than their 
sequence or structure (3–5).

The Similarity Ensemble Approach (SEA) considers proteins 
from a chemocentric point of view, relating them through the 
chemical similarity of their ligands (6). The idea is that similar 
molecules have similar biological profiles (7) and bind similar tar-
gets (8, 9). This technique links hundreds of ligand sets–and cor-
respondingly their protein targets–together in minimal spanning 
trees where biologically related proteins cluster together as an 
emergent property (see Fig. 1). These networks are robust (10) 
and may be used to predict off-target effects (6). The similarities 
among ligand sets may reveal the pharmacological relationships 
of the targets whose actions they modulate.

How does SEA work? An overview of the different stages is 
available in Fig. 2. The similarity between two ligand sets is first 
approximated by summing the similarity scores of molecule pairs 
across the sets (see Fig. 2b). In itself, the resulting raw score is not 
a good estimate of the overall similarity of the sets, as it does not 
discriminate relevant similarities from random and depends on the 
number of ligands in each set. SEA corrects for these shortcom-
ings via a statistically determined threshold–pairs of molecules that 
score below it are discarded and do not contribute to the overall 
set similarity. We then convert the raw score to a size-bias-free 
z-score using the mean and standard deviation of raw scores modeled 
from sets of random molecules. Finally, we express the similarity 
score between two sets as an E-value, i.e., the probability of a given 
z-score that high or better to be observed from random data. 
Small E-values, then, reflect relationships between ligand sets that 
are stronger than would be expected by random chance alone.

1. A reference database of chemical structures, annotated by ther-
apeutic indication or mechanism of action. For the purpose of 
illustration, we used the MDL Drug Data Report (MDDR) 
(11) which contains 65,367 molecules organized in 249 sets 
(see Note 1).

2. A molecular descriptor generator to encode the structural 
information of the compounds. We obtained the best results 
with 2-dimensional fingerprints based on topology of the 
molecules such as the 2,048-bit default Daylight or 1,024-bit 
folded Scitegic ECFP_4 descriptors (see Note 2).

3. A similarity coefficient, such as the Tanimoto coefficient  
(see Note 3).

2. Materials
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4. Calculating the parameters of the reference database requires a 
fitter program to calculate nonlinear regressions (see Note 4).

5. Building a similarity network requires a graph visualization 
program, such as Cytoscape (12).

SEA quantifies the similarity among sets of compounds which 
may be organized by the targets they modulate, the therapeutic  
indications they address, their activity in a high-throughput 
screening campaign, or a variety of other criteria. So far, we have 
focused on sets organized by targets, but SEA can be used with 
other annotations.

Before comparing any sets with SEA, the parameters of the 
background database–generally the one containing the sets one 
wishes to compare to–need to be calculated. While this step is 
computationally intensive, it is only required once for a given 
database, molecular descriptor, and similarity coefficient (see 
Subheading 3.1). Once the optimal threshold ti and the formulae 

3. Methods

Fig. 2. Method overview: Ligand sets derived from existing databases (a) are used in set-wise comparisons (b) against a query 
set, the result of which is quantified by the statistical model inferred from that reference database (c). The generated probabil-
istic data can be used to construct chemical mappings of the ligand sets and correspondingly the biological targets (d).
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of the mean ym and standard deviation ys as a function of the 
product of the sets’ sizes (|a| × |b|) have been determined, SEA 
can be applied to quantify set similarity (see Subheading 3.2).

In this section, we generate thousands of randomly populated pairs 
of ligand sets and determine the uncorrected similarity among 
them. We use these “random” similarities to build an empirical 
model of background chemical similarity. The particular choice of 
chemical database will determine the type of background: KEGG 
molecules will yield a metabolic background, whereas ZINC mol-
ecules will produce drug- or lead-like backgrounds (depending on 
the exact subset used). It is preferable to choose as large a database 
as possible; those in excess of 100,000 molecules are often ideal.
 1. Choose minimum and maximum set sizes smin and smax for sam-

pling, such that they will be representative of molecule sets 
annotated in the database (see Note 5).

 2. Sample at least 1,000 integers si from the range (smin×smin) to 
(smax × smax) (see Note 6).

 3. For each product of sets’ sizes si, calculate all its integer factors 
fi, such that smin £ fi £ smax.

 4. For each si, choose 30 of its fi at random and construct two sets 
a and b, consisting of fi and si/fi molecules, respectively, ran-
domly selected from the background molecule database (see 
Note 7).

 5. For each pair of sets a and b, calculate standard chemical 
similarities ca,b for each pair of ligands across the sets using 
your previously chosen chemical similarity descriptor and 
coefficient.

 6. For ti, where 0 £ ti < 1 with step size 0.01, calculate a 
“raw score” ra,b(ti) equal to the sum of all ca,b where ca,b > 
ti. Store all calculated ra,b(ti), along with the sizes of sets a 
and b (see Note 8).

 7. For each ti, plot all ra,b(ti) scores vs. the product of set sizes 
a and b, e.g., plot all points (|a| × |b|, ra,b). There should be 
100 plots (see Note 9), each corresponding to a particular 
choice of ti.

 8. For each plot, use the nonlinear fitter to determine the 
mean expected random chemical similarity (see Fig. 2c and 
Fig. 3a). Typically, an equation of the formula ym = mxn + p 
will be appropriate (see Note 10).

 9. For each plot, bin the data by the x-axis values, such that 
each bin ideally has no fewer than five data points. Given the 
previously fitted ym, calculate the standard deviation of each 
bin with Laplacian correction, and fit the resulting stand-
ard deviation points nonlinearly (see Fig. 2c and Fig. 3b). 
Again, ys = qxr + s will typically be appropriate.

3.1. Calculating the 
Parameters of the 
Reference Database
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10. For each plot, use the fitted ym and ys to transform all original 
points (|a| × |b|, ra,b) to their z-scores za,b = (ra,b − ym(|a| × 
|b|))/ys(|a| × |b|) (see Note 11). Construct a histogram of 
these z-scores.

11. For each histogram, nonlinearly fit the data to Gaussian and 
extreme value type I (EVD) distributions (see Note 12, Fig. 2c, 
and Fig. 3c).

12. Based on goodness of fit, such as each fit’s observed-vs.-
expected c2 value, select the threshold choice ti, such that 
the histogram best fits an EVD instead of a Gaussian distri-
bution (see Note 13).

13. Record the chosen ti and that ti’s formulae for ym and ys. 
These values comprise the random background model. All 
other plots, histograms, and formulae may be discarded at 
this point.

To calculate the set-wise similarity among sets of ligands, we 
reuse much of the machinery developed to calculate background 
models and extend it to calculate E-values. By exhaustively 
comparing all pairs of sets across two collections (databases), we 
can then rank the top hits for any particular ligand set.

In practice, a ligand set should not comprise fewer than ten 
ligands, unless you intend to compare it against large sets only. 
For instance, it would not be statistically reliable to compare two 
sets of five ligands each, but a set of five ligands compared against 
a set of thirty should be acceptable. Although the particular 
choice of set size should depend on the diversity of ligands within 
a set, a good rule of thumb is to build sets such that the product 
of the set sizes will be no less than 100 (e.g., the product of set 
sizes is 25 for the five-by-five case, and 150 for the five-by-thirty 
case mentioned earlier).
 1. To calculate similarity ensembles, choose two collections of 

sets Ca and Cb to compare (see Note 14).
 2. For each set a and b from collections Ca and Cb, respectively, 

calculate ra,b(ti) as previously described using only the opti-
mal threshold ti from the background model. Be sure to use 
the actual molecule structures annotated for each set.

 3. Transform each ra,b(ti) to z-score za,b as described in Subhead-
ing 3.1, step 10.

3.2. Calculating 
Set-Wise Similarity 
Ensembles

Fig. 3. Statistical models: a Correlation between the product of sets’ sizes and the mean of the raw score. The fitted func-
tion typically corresponds to an equation of the formula ym = mx n + p with n = 1. b Correlation between the product of sets’ 
sizes and the standard deviation of the raw score. The fitted function typically corresponds to an equation of the formula 
ys = qxr + s, with 0.6 < r < 0.7. c Distribution of the z-scores obtained from random data using ECFP_4 fingerprints, with a 
similarity score threshold (ti ) of 0.57 and fitted to an extreme value distribution.
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4. Transform each z = za,b to p-value P(Z > z) = 1 − exp 
(−e−zp/sqrt(6)−G¢(1)), where G¢(1) is the Euler–Mascheroni constant 
(»0.577215665) (see Note 15).

5. Optionally, the p-value may be transformed to a BLAST-like 
E-value by calculating E(z) = P(Z > z) × ndb, where ndb = the 
number of set-vs.-set comparisons made when comparing 
all sets from collection Ca against all sets from collection Cb. 
Typically, ndb = |Ca| × |Cb|.

6. For each set a, rank all sets bi from Cb by their E-value, where 
values approaching zero are the best scores (see Note 16).

A similarity network is a graphical view of the E-value relation-
ships among all ligand sets in a particular database (see Note 17). 
If these ligand sets represent particular drug targets, for instance, 
it is a visualization of the significant chemical similarity present 
among these targets (see Fig. 1).
1. Calculate the similarity ensemble E-values between all sets 

ai and aj from Ca versus itself (see Note 18), as previously 
described.

2. The resulting matrix of E-values defines a strongly connected 
graph, where each node corresponds to a molecule set and 
each edge to the E-value between two sets (see Note 19).

3. We use Kruskal’s algorithm (13) to construct a minimum 
spanning tree (MST):
a. Create a set Stree that initially contains all individual nodes, 

unconnected. We refer to elements of Stree as “trees.”
b. Create a set Se that contains all possible edges ei (E-values).
c. While Se is not empty

i. Remove the minimum-weighted (best) edge emin from Se.
ii. If emin connects two existing trees ta and tb in Stree.

1. Remove ta and tb from Stree, connect them into a single 
new tree tab using emin, and add tab back into Stree.

iii. Else, discard emin.
d. When the algorithm finishes, Stree will contain only one tree, 

which is the graph’s MST.

1. Examples of other freely or commercially available annotated 
chemogenomics databases include WOMBAT, KEGG, and 
DrugBank. Note, however, that SEA can be used with any kind 
of annotation and is not limited to ligand-target association.

3.3. Building  
a Similarity Network

4. Notes
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 2. For efficiency, the steps in Methods will be faster if finger-
prints are precalculated and stored for each molecule.

 3. While it is not technically necessary, we assume that the 
similarity coefficient is normalized from 0.0 to 1.0. If not, 
choose appropriate bounds for the range of ti thresholds dis-
cussed in Subheading 3.1, step 6.

 4. The open-source Scientific Python (SciPy) package (14) pro-
vides a least-squares optimizer that can be used for fitting 
nonlinear regressions.

 5. If you are unsure of appropriate values, use smin = 10 and 
smax = 300.

 6. More than 1,000 points may be sampled, but in our experi-
ence this does not yield a substantial difference in the final 
model.

 7. If there are fewer than 30 distinct factors fi for a particular 
integer si, randomly sample from the available fi 30 times. 
Sampling more than 30 points is also acceptable, depending 
on the diversity of the background database and computa-
tional resources.

 8. These raw scores are the “random” similarities that form the 
background model. Besides the choice of similarity descriptor 
and coefficient, the threshold ti is the only settable major SEA 
parameter. By sampling across the range of ti choices, we will 
be able to determine an optimal choice of ti in later steps.

 9. For the steps plotting these data (and later, the histograms), 
you need not actually draw out the full plots. All that is strictly 
necessary is that your data are formatted appropriately for 
input into your chosen fitter. Using SciPy, for instance, it is 
enough to store these data points in internal arrays.

 10. In our experience, the mean raw score fit ym has always been 
linear.

 11. The z-score is the number of standard deviations by which a 
particular raw score exceeds the expected mean.

 12. You may use the “norm” and “gumbel_r” SciPy data types 
for Gaussian and extreme value type I distributions, respec-
tively.

 13. There is currently no formal justification for choosing the ti 
threshold, but this approach is consistent and enriches for 
a BLAST-like background probability distribution. Some 
experiments also suggest that this choice is reasonable, as 
thresholds derived from retrospective cross-fold analysis are 
identical or close to the threshold ti (unpublished).

 14. One such collection may be built from the annotated molec-
ular structure database. The second may be the exact same 
collection (for symmetric comparisons), or derived from a 
different database of annotated molecules.
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 15. This formula converts EVD z-scores to their p-values, where 
the p-value expresses the probability of finding a z-score that 
strong or better, by random chance alone.

 16. An E-value of 1 or higher is not statistically significant. The 
similarity between two sets becomes significant when it is at 
least one order of magnitude smaller than random chance 
alone, i.e., 10−1. Sets that are highly similar have E-values 
«10−50, although there is no single cutoff for E-value signifi-
cance. The SEA Search tool at http://sea.docking.org may 
also be used check the accuracy of the z-scores and E-values 
calculated in Subheading 3.2.

 17. While there are many appropriate graph-theoretic approaches, 
we have chosen an MST. An MST is a selection over all graph 
edges (E-values) such that the resulting tree links all nodes 
(ligand sets) at lowest “cost” to the network as a whole. For 
example, an edge with an E-value approaching zero has a lower 
cost to the tree than one with an E-value of 1. The resulting MST 
will preferentially include only those edges with the smallest 
E-values. It may be interpreted as a simplified view of higher-
dimensional chemical similarity space.

 18. These instructions apply only to symmetric collection 
comparisons, e.g., Ca = Cb.

 19. You may either (a) use Cytoscape to filter out all edges above an 
E-value threshold of your choice, or (b) construct a global MST.
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