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Summary
Predicting the phenotype of an organism from its
genotype is a central question in genetics. Most impor-
tantly, we would like to find out if the perturbation of
a single gene may be the cause of a disease. However,
our current ability to predict the phenotypic effects of
perturbations of individual genes is limited. Network
models of genes are one tool for tackling this problem. In
a recent study, (Lee et al.) it has been shown that network
models covering the majority of genes of an organism can
be used for accurately predicting phenotypic effects
of gene perturbations in multicellular organisms. Bio-
Essays 30:707–710, 2008. � 2008 Wiley Periodicals, Inc.

Phenotype prediction

Clarifying the link between phenotype and genotype of an

orgnanism is at the core of research in genetics. As genome

sequences of species and, recently, individuals(2) continue

to be established, an important research question over coming

years will be to link variations in individual genes to phenotypic

effects, most interestingly, genes that are involved in disease.

How to accomplish accurate predictions of phenotypic

effects of gene perturbation, however, is an open research

question. One approach is to represent the genes of an

organism and their functional relationships in terms of a

network model and to predict phenotypic effects using this

model. This is the approach pursued by Lee et al. in their recent

study on phenotype prediction in C. elegans.(1)

Network model

What does such a network model look like? A network, or

more mathematically, a graph, models objects and their

relationships via nodes and edges. In the gene networks used

for phenotype prediction here, each gene is modeled by a

node, and edges indicate functional similarity between these

genes. Each edge is assigned a probability score, indicating

the probability that these two genes are involved in the same

biological process. The higher this score, the more likely a

functional relationship between these genes is.

This functional relationship of genes can be defined in a

multitude of ways: genes may be functionally similar if they

have similar gene expression profiles, if there are known

physical or genetic interactions between them or their ortho-

logs in other model organisms, if there exist literature-mined

associations between them, or if they are known to be

functionally associated, co-inherited or related to the same

operon in yeast, bacterial or archael homologs of C. elegans

genes. Rather than choosing one of these definitions,

Lee et al. developed an integrated network model from

diverse datasets on all these types of relationships between

genes.

Data integration

Why is it promising to integrate several datasets? Experimen-

tal datasets are usually neither complete nor noise- and

error-free. By integrating multiple datasets, one hopes to

uncover reliable information—which is confirmed by several

datasets—and to detect missing information—which is

present in some datasets, but absent in others.

This process of data integration is highly non-trivial. On the

one hand, simply taking the union of all datasets, i.e. creating

a model that contains all edges that are present in at least

one dataset, might lead to an error-prone network with poor

predictive ability. On the other hand, only considering edges

that are confirmed by all datasets, will produce a network

model with low coverage and few edges, ignoring relevant

information.

Lee et al. tackle this problem in two steps: First, they

generate quality scores for each dataset. These quality scores

measure whether the links in this dataset reflect whether genes

share biological functions in terms of Gene Ontology (GO)

annotations.(3) Second, they then integrate the datasets into a

single network, referred to as Wormnet v1, using weights that

are correlated with the quality scores. Wormnet covers 82%

(16,113 genes) of all genes in C. elegans, whereas earlier

studies did not include more than 20% of C. elegans genes.(4–7)
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Contributions of Lee et al.

The central contribution of this study by Lee et al. is to show

that this single integrated gene network model allows for

accurate phenotype prediction, even:

* for multicellular organisms,

* when considering whole-organism networks rather than

special subgroups of genes,

* for specific tissues and developmental stages, despite

using a single general network.

While single network models had been used in yeast

before(8–10) and specialised subnetworks in other species,(4)

Lee et al. are the first to demonstrate the predictive power of

a single comprehensive gene network in a multicellular

organism.

Insights into network structure

In their study, Lee et al. employ this network model to explore

the link between network topology and the essentiality of a

gene, to predict phenotypic effects of perturbing individual

genes, and to find genes that are part of a biological pathway.

Gene connectivity and essentiality

First, they establish that the essentiality of a gene, i.e. its

importance for the viability of the worm, and its connectivity,

i.e. its number of neighbourswithin the network, are correlated.

Hence the more neighbours a gene has, the more likely it is that

its perturbation may have a lethal effect on the worm.

This correlation has been reported for protein interaction

networks in yeast before,(11) but there were doubts whether it

might hold for animal networks as well.(12) Lee et al. find a

strong correlation between connectivity and essentiality of

genes in their network model of C. elegans genes. They

ensure that this finding is not an artefact of yeast-derived

information being used in their network model by removing all

yeast-based information from Wormnet. Even after this

removal, essentiality and viability are found to be correlated.

To check whether this correlation might be present in

mammals as well, they derive a subnetwork of Wormnet

for genes with known orthologs in mouse. The correlation

between connectivity and lethality can again be observed in

this mouse network, indicating that this correlation might

represent a fundamental principle of biology that is conserved

across species.

Prediction of RNAi phenotypes

Second, the authors assess the power of the network model

to predict the loss-of-function phenotype of single gene

perturbations induced by RNA interference. RNA interference

(RNAi) is a process in which double-stranded RNA inhibits

the expression of specific genes.(13)

Lee et al. examine 43 different loss-of-function phenotypes,

as established by genome-wide RNAi screens. For each

loss-of-function phenotype, a reference set of genes (‘seed

set’) is known that exhibits this phenotype when perturbed. All

genes in the network (including the genes in the reference set)

are then ranked based on the number and strength of their

links to this reference set (see Figure 1). The key idea is that a

gene that is linked to many genes from the reference set might

exhibit the same loss-of-function phenotype.

Using this ranking, 29 of the 43 phenotypes can be

predicted with high accuracy, another 10 with an accuracy

which is better than random.

These phenotypes that can be accurately predicted span a

wide variety of cellular, developmental and physiological

processes, and include phenotypes that specifically affect

certain tissues or certain developmental stages of the worm.

Hence this single network model of C. elegans genes shows a

remarkably general ability for accurate phenotype predictions.

Only on 4 out of 43 phenotypes, the network model does not

yield results that are better than random guessing. The failure

on this minority of datasets might be caused by noise in the

RNAi screens, by definitions of phenotypes that are not

specific enough, or simply by information that is incomplete or

missing in Wormnet.

‘Network-guided screening’

Third, the network model can be used to identify genes that are

involved in a particular biological pathway. The key idea is

the same as for phenotype prediction: Find those genes in

the network that are tightly linked to a set of genes that form a

Figure 1. Schematic illustration of Lee et al.’s approach to

phenotype prediction from network models. The reference set

of genes with known common loss-of-function phenotype is

represented by black nodes. The other genes in the network

are ranked based on their connectivity to this reference set (the

darker the node, the stronger its connectivity to the reference

set): top-ranked nodes are predicted to exert the same loss-of-

function phenotype as the reference set (All connections are of

identical strength in this simple example).
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biological pathway. These close ‘neighbours’ are then pre-

dicted to be members of the same pathway—an approach that

Lee et al. refer to as ‘network-guided screening’.

Lee et al. employ this approach to identify genes involved

in the retinoblastoma tumor suppressor pathway and

experimentally verified their predictions using RNAi screens

inhibiting the candidate genes. The predictions of pathway

membership based on Wormnet were up to 21-fold better

than predictions based on random selection of nodes from

the network.

Theyalso experimentally confirmed a predicted connection

between the dystrophin associated protein complex (DAPC)

and the EGF signaling pathway in C. elegans. In Wormnet, the

DAPC complex and the EGF signaling pathway are connected

by three links, hinting at a functional relationship.

These three sets of experiments all indicate that this single

network model of C.elegans enables insights into network

structure, reaching from global topological phenomena, such

as the correlation between connectivity and essentiality, to

specific local phenomena, such as the link between the DAPC

and the EGF signaling pathway.

Next goal: a human network model

While Lee et al. are taking the step from yeast to worm in this

study, they clearly point at the next natural goal: To develop a

similar network model for human genes.

What lessons can be learnt from the development of

Wormnet for the design of a human network model? First,

the types of data used in Wormnet are already available for

humans. Hence data availability is not an obstacle. Second,

Wormnet is able to predict phenotypic effects on inidividual

tissues, even though few of the data used for creating

Wormnet are based on tissue-specific measurements. A

similar network for humans genes might not require these

tissue-specific data either.

Despite these promising results, what major obstacles

might occur along the way? A potential problem of a human

equivalent of Wormnet might be that it is based on similarity

search: Wormnet can only predict the loss-of-function pheno-

type of a gene if other genes with exactly this phenotype are

known. For many human diseases, often little is known about

the genes involved. Still, Lee et al. found evidence that, even

when only very few (less than six) genes of a particular

phenotype are known, Wormnet is able to generate accurate

phenotype predictions. This indicates that studies of human

diseases, where only a few disease-related genes are usually

known beforehand, might still be a realistic goal.

Algorithmic challenges

In this study, Lee et al. have not only demonstrated the

predictive power of a single gene network. They have also

shown that putting enormous effort in data collection,

preprocessing and integrating allows the generation of a

network model that yields accurate phenotype predictions.

For machine learning in bioinformatics, an interesting

challenge will be if a comparable effort in designing refined

algorithms for data integration and prediction can further

enhance Wormnet’s prediction accuracy. To name a few

specfic examples, can we improve phenotype predictions:

* by learning optimal weights for the different types of

information that are integrated into Wormnet?

* by using algorithms that take the whole structure of the

network model into account, not just individual links

between genes?

* by using graphical models that allow to model the

dependencies between genes explicitly, that is how

silencing one gene affects other genes in the network?

* by explicitly predicting the functional role of a gene that

is perturbed, rather than its general loss-of-function

phenotype?

For the latter two questions of developing an even more

refined gene network that allows for more specific function

predictions, joint efforts of experimental groups and algorith-

mic groups will be invaluable. We feel that, if the generation of

the data and algorithms for developing these future network

models accompany each other, our ability to predict pheno-

typic effects of gene perturbations will significantly improve in

the near future.

To conclude, Lee et al. have developed a single genome-

wide network model for predicting phenotypic effects of gene

silencing via RNAi in C. elegans. For years to come, phenotype

prediction will pose several exciting research challenges at

the interface of bioinformatics, systems biology and machine

learning.
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