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Abstract
The last few years have seen significant advances in our understanding of the molecular mechanisms
of stem-cell-fate specification. New and emerging high-throughput techniques, as well as
increasingly accurate loss-of-function perturbation techniques, are allowing us to dissect the interplay
among genetic, epigenetic, proteomic, and signaling mechanisms in stem-cell-fate determination
with ever-increasing fidelity (Boyer et al. 2005, 2006; Ivanova et al. 2006; Loh et al. 2006; Cole et
al. 2008; Jiang et al. 2008; Johnson et al. 2008; Kim et al. 2008; Liu et al. 2008; Marson et al.
2008; Mathur et al. 2008). Taken together, recent reports using these new techniques demonstrate
that stem-cell-fate specification is an extremely complex process, regulated by multiple mutually
interacting molecular mechanisms involving multiple regulatory feedback loops. Given this
complexity and the sensitive dependence of stem cell differentiation on signaling cues from the
extracellular environment, how are we best to develop a coherent quantitative understanding of stem
cell fate at the systems level? One approach that we and other researchers have begun to investigate
is the application of techniques derived in the computational disciplines (mathematics, physics,
computer science, etc.) to problems in stem cell biology. Here, we briefly sketch a few pertinent
results from the literature in this area and discuss future potential applications of computational
techniques to stem cell systems biology.

FROM MOLECULES TO NETWORKS
Modern stem cell studies now typically use a variety of different high-throughput techniques
to deconstruct the molecular basis of cell-fate specification. Nevertheless, individual studies
inevitably only focus on one chosen aspect of stem cell self-renewal, fate specification, or
reprogramming. Consequently, although they typically produce a wealth of data, each
individual study still only represents a small aspect of our collective knowledge of stem cell
behavior. Therefore, it is useful for information from a large number of individual studies to
be collated and cataloged into structured meta-data sets representing the collective knowledge
about the molecular regulatory mechanisms that control stem cell self-renewal and
differentiation. However, the task of constructing and maintaining such collective knowledge
data sets is computationally and biologically challenging because different experimental
studies consider different types of stems cells, under different culture conditions, using
different experimental techniques that may naturally produce biased results due to inherent
limitations of experimental techniques. For example, proteomic experiments are known to
enrich for highly abundant proteins, whereas gene expression microarrays are noisy and mRNA
levels often only partially correlate with protein expression and function. To tackle the data
integration and knowledge accumulation challenge, applications of techniques from the
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mathematical field of graph theory (Ma’ayan 2009) have been particularly successful. The
realization that complex biological systems can be conceptually represented as networks (also
known as graphs in the mathematical literature) has revolutionized our approach to exploring
complex biochemical systems. To construct a biological regulatory network, elements such as
genes, proteins, mRNAs, microRNAs (miRNAs), or any other kind of molecular species are
represented as nodes, whereas the biochemical interactions between species, for example,
protein–protein interactions or transcription factor regulation of gene expression, are
represented as edges or links. Because a variety of different types of regulatory mechanisms
can be represented as networks (Ma’ayan et al. 2005a), representing complex biochemical
systems as networks allows the merging of different types of experimental data into a single
conceptual framework (Ma’ayan 2008). An example of the successful application of graph-
theoretic techniques to data integration in stem cell biology was recently given by Franz-Josef
Müller, Jeanne Loring, and coworkers (Müller et al. 2008). They first classified different types
of human stem cells on the basis of their genome-wide mRNA expression signatures (Müller
et al. 2008) and identified a set of genes that are specifically up-regulated across a variety of
different types of stem cells. Then, using available mammalian protein–protein interaction
databases, they “connected” their identified stem cell gene set into a network of protein
interactions, naming this integrated network PluriNet. To build PluriNet, the authors made use
of a graph-theoretic algorithm and software package called Matisse (Ulitsky and Shamir
2007) to identify modules in gene expression data using background knowledge about known
protein–protein interactions. In general, algorithms such as Matisse can be used to identify
functional modules in complex data sets (Berger et al. 2007), whereas statistical tools can be
used to characterize the functional theme of such modules (Subramanian et al. 2005).
Alternatively, protein–protein interaction networks can be readily reconstructed
experimentally using proteomic techniques such as immunoprecipitation-based “pull-downs”
followed by mass spectrometry (IP-MS) (Gygi and Aebersold 2000). For example, a protein–
protein interaction network centered around the transcription factor Nanog was recently
constructed by Jianlong Wang, Stuart Orkin, and coworkers using a set of serial IP-MS
experiments in which they pulled down different components of the Nanog interaction complex
one at a time (Wang et al. 2006). Resources such as the PluriNet and empirically constructed
interaction networks are useful because they can be used as a reference upon which to “project”
future data and interpret new findings within the context of known biology.

Another source of data for building regulatory networks comes from high-throughput
chromatin immunoprecipitation (ChIP)-chip (Kidder et al. 2008), ChIP-seq (Chen et al.
2008), and ChIP-PET (Loh et al. 2006) experiments. These techniques are commonly used to
identify transcription factor—DNA interactions and thereby connect transcription factors to
the putative sets of genes that they regulate. These techniques can also be used to identify a
broad range of epigenetic chromatin modifications such as methylation/acetylation status of
histone proteins. Several studies have used these techniques to identify targets of a number of
the core pluripotency transcription factors. To clarify the nature of the observed binding events,
high-throughput transcription-factor-binding studies are often coupled to loss-of-function
experiments and genome-wide mRNA expression profiling to assess the functionality of any
identified putative regulatory interactions (e.g., whether observed transcriptional binding
induces activation or repression of the target gene). In addition to transcriptional regulation of
stem cell fate, accumulating evidence, first in Drosophila (Hatfield et al. 2005) and more
recently in mammalian stem cells (Houbaviy et al. 2003; Tay et al. 2008), suggests that
miRNAs are also intimately involved in the regulation of stem-cell-fate decisions (Gangaraju
and Lin 2009). For example, it has recently been shown that mir-21 suppresses a set of core
pluripotency genes and is itself transcriptionally suppressed by the pluripotency factor Rest
(Singh et al. 2008). Consequently, databases and network analyses deconstructing the place of
miRNAs in the regulation of mammalian cells are also rapidly emerging (Altuvia et al. 2005;
Griffiths-Jones et al. 2006). Although transcriptional regulation of stem cell fate is now being

Macarthur et al. Page 2

Cold Spring Harb Symp Quant Biol. Author manuscript; available in PMC 2009 September 4.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dissected with increasing detail, the complex signaling network (Ma’ayan et al. 2005b)
upstream of the transcriptional network is less well understood. Even less information is
available that sheds light on how signaling networks converge on events that occur in the
nucleus. However, we anticipate that emerging high-throughput phosphoproteomics and RNA
interference experiments will provide insights into the structure and function of stem cell
signaling networks and their relationship to the core transcriptional network. Indeed, some
progress has already been made toward this end (Chen et al. 2008).

Taken together, these reports suggest that stem-cell-fate determination is an intrinsically
complex process, regulated by a dynamic interplay among genetic, proteomic, miRNA, and
epigenetic mechanisms. To begin to make sense of this complexity, it is useful to cast this
multiplicity of biochemical interactions in the form of networks that encode the architecture
of the regulatory mechanisms of stem-cell-fate specification at the system level (Fig. 1).
However, this approach inevitably leads to a paradox: As our understanding of the molecular
basis of cell fate becomes more detailed, the networks that arise from these integrative studies
become correspondingly more complex and difficult to interpret. For this reason, there is now
a pressing need to generate new tools to make sense of these complex networks to understand
how internal molecular circuitry defines cell fate at the systems level. In a sense, new tools are
needed to “see the forest and not just the trees.” In the following section, we discuss ways in
which mathematical models may be fruitfully used to make sense of this complexity.

FROM NETWORKS TO ATTRACTORS
A mentioned above, a number of recent reports have begun to reconstruct the transcriptional
circuitry underpinning the maintenance of stem cell pluripotency and self-renewal (Boyer et
al. 2005; Ivanova et al. 2006; Kim et al. 2008). Taken together, these studies report a complex
transcriptional regulatory circuit centered around a set of core pluripotency factors (including
Oct4, Sox2, Nanog, Esrrb, Tbx3, Tcl1, Dppa4, Tcf3, and others) connected to an extended set
of lineage-specifying factors. Crucially, this extended circuit appears to have a highly enriched
feedback loop structure, in which the core pluripotency factors regulate the expression of their
target genes in a highly combinatorial manner and are themselves regulated in a coordinated
way. The multiplicity of positive and negative feedback loops present in this core circuit makes
determination and prediction of cell behavior from regulatory architecture intrinsically
difficult. To tackle this problem, it is conceptually convenient to take a physical approach and
think of transcriptional activation and inhibition as forces that “push” and “pull” the cell’s
internal transcriptional state in different directions: some synergistically, pushing the cell in
the same genetic direction; others competitively, pushing the cell in divergent directions.
Within this framework, cell-fate determination may be seen as resulting from the sum of the
internal forces that the cell experiences in response to environmental signaling cues, and cell
“types” as equilibrium states in which the core transcription factors are expressed at a level
that balances the system. Within the mathematical literature, such balanced configurations are
referred to as attractors because if perturbed away, the system is attracted back to the balanced
state over time. A useful analogy is that of a marble perturbed from the bottom of a bowl that
tracks out a transient trajectory around the sides of the bowl only to eventually return to rest
again at its bottom. A system that supports the existence of multiple different attractor states
is said to exhibit multistability.

The notion that different cell types may result from multistability of an underlying dynamical
system was first suggested by the Nobel-Prize-winning physicist Max Delbrück in the late
1940s (Delbrück 1949; Thomas 1998) and has been developed extensively in a theoretical
context by Stuart Kauffman and other researchers since the late 1960s (Kauffman 1969,
1993; Thomas 1998; MacArthur et al. 2008). However, although this notion has received much
attention in the theoretical literature, experimental evidence that distinct mammalian cell fates
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may correspond to attractors of underlying high-dimensional regulatory networks has only
recently been provided by Sui Huang, Donald Ingber, and coworkers (Huang et al. 2005). To
do so, these authors made use of the experimental observation that similar in vitro cellular
responses can often be induced by disparate chemical stimuli. In particular, they used the fact
that human promyelocytic HL60 cells may be triggered to neutrophil differentiation in vitro,
either by treatment with retinoic acid (RA) or by treatment with dimethylsulfoxide (DMSO).
By taking time courses of microarrays during differentiation, they found that RA and DMSO
initially triggered widely divergent patterns of gene expression; however, although genome-
scale patterns of expression were initially divergent, they found that, over time, the patterns of
gene expression induced by RA and DMSO ultimately converged to a common end point. The
fact that alternative perturbations affect a common response through divergent routes is
characteristic of an attracting state, and their results therefore suggest that the HL60 neutrophil
state is an attractor of a (as yet undefined) complex regulatory network. Since this initial report,
further evidence that other mammalian cell types may be high-dimensional attractors has been
provided (Chang et al. 2006, 2008; Ying et al. 2008). For instance, by blocking fibroblast
growth factor (FGF) receptor and extracellular signal-regulated kinase (ERK) signaling, Qi-
Long Ying, Austin Smith, and coworkers demonstrated that, if protected from external
inductive differentiation stimuli, mouse embryonic stem cells may be maintained in culture in
a self-renewing state without the need for the additional culture stimuli usually required for
their maintenance. This result suggests that in the mouse, the core self-renewing pluripotent
state is internally stable and self-sustaining, indicating that it may correspond to an attractor
of the complex pluripotency circuit. Within this context, recent reports that fully differentiated
cell types may be reprogrammed to a primitive pluripotent state by a variety of different means
(Yu et al. 2007; Nakagawa et al. 2008; Feng et al. 2009) are also indicative of the presence of
a core pluripotent attracting state.

Taken together, these experimental reports are consistent with the notion that cell fates,
including the primitive pluripotent self-renewing state, may correspond to different high-
dimensional attractors of the cell’s internal regulatory circuitry. However, current reports have
generally only provided indirect evidence of attractors or evidence for cellular attractors at the
RNA level. Because cell fate is controlled by complex feedback among genetic, epigenetic,
and proteomic mechanisms, a current challenge in stem cell systems biology is to extend these
initial reports, to map not only the genetic profile of cellular attractors, but also the proteomic
and epigenetic profiles of cellular attractors. For example, from a biological point of view, it
is usual to think of cell types as characterized by fixed molecular signatures (Ivanova et al.
2002); however, from a mathematical point of view it is also natural to suspect that the complex
circuitry at the core of cell-fate specification may allow not just static “fixed-point” attractors,
but also stable self-sustaining oscillatory states, in which transcriptional forces balance in a
dynamic manner. Oscillators are ubiquitous in complex systems containing feedback loops,
and many biochemical oscillators have correspondingly been described (Winfree 2001). In the
context of stem cell differentiation, recent data indicating that Nanog expression fluctuates in
murine embryonic stem cells (Chambers et al. 2007) are possibly indicative of a dynamic,
rather than static, attracting state. The notion of dynamic stem cell attractors is intuitively
appealing because, if present, they may allow individual cells to be dynamically primed: At
the Nanog high-expression phase, cells are resistant to inductive stimuli, whereas at the Nanog
low-expression phase, cells are sensitive to inductive differentiation stimuli. Evidence for
dynamic stem cell attractors is currently lacking; however, we anticipate that this may be a
fruitful area for future stem cell systems biology research.

FROM ATTRACTORS TO LANDSCAPES
In an attempt to understand the robustness of cellular differentiation, Conrad Waddington
suggested his now famous epigenetic landscape (Waddington 1957). His view was that
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development occurs rather like a marble rolling down a tilted, funneled landscape containing
multiple “hills” and “valleys”: As differentiation progresses, the cell adopts a more and more
specific state, corresponding to a deeper valley in the landscape, and is barred from spontaneous
movement between states by the hills that split the landscape into discrete valleys. Crucially,
within Waddington’s view, cell types are not terminally fixed, but rather, they are maintained
by “epigenetic” barriers that can, given sufficient perturbation, be overcome. Recent
demonstrations that cells can be reprogrammed from one type to another (Jaenisch and Young
2008; Zhou et al. 2008) suggest that this is indeed the case, and these reports have
correspondingly led to a revived interest in Waddington’s ideas (Goldberg et al. 2007). The
notion that cell fate is guided by an underlying regulatory landscape is also appealing from a
theoretical point of view because, for many complex systems, attractors may be directly
associated in a precise way with local minima of an appropriately defined potential energy (or
energy-like). This observation has led other authors to conjecture that Waddington’s epigenetic
landscape may, in fact, correspond to the “energy” landscape of a cell’s underlying regulatory
architecture (Huang and Ingber 2007). Energy landscapes have proven to be successful in
helping to understand many other complex phenomena (such as the protein folding problem,
for example [Wales 2003; Janke 2007]), and we therefore anticipate that applications of energy
landscape theory will be useful in addressing the relationship between internal regulatory
circuitry and cell-fate determination. In particular, by determining the topology of cellular
“energy” landscapes, it may be possible to understand not just the nature of individual cellular
attractors, but also the ways in which individual attractors relate to one another (e.g., the heights
of the barriers separating them). In the context of cellular reprogramming, such information
would be particularly useful because it would provide a means to determine how efficiently
different cell types may be reprogrammed, either to the pluripotent state or to alternative
differentiated or multipotent states.

CONCLUSIONS
These are exciting times for stem cell biology. New and emerging high-throughput
technologies are allowing us to deconstruct the mechanisms of cell-fate determination with
ever-increasing detail. By representing the multiplicity of regulatory interactions underpinning
stem cell fate as networks, we are beginning to dissect stem-cell-fate specification at the
systems level. However, it is becoming clear that cell-fate specification is a fundamentally
complex process and this complexity makes it intrinsically difficult to determine and predict
cell behavior from regulatory network architecture. One potential way to connect cell fate to
regulatory circuitry is by using regulatory architecture to define a cellular “energy” landscape
—in which valleys are associated with different cell types and hills are associated with the
barriers between them—and computationally explore the topology of this landscape. This
approach is conceptually reminiscent of Waddington’s epigenetic landscape but has, until
recently, been hampered by lack of data. However, with the advent of high-resolution high-
throughput techniques, we are now beginning to accumulate sufficient data at multiple
molecular and biochemical levels to make Waddington’s vision quantitative. Doing so will
require interdisciplinary collaboration among experimentalists, mathematicians, physicists,
and computer scientists. Thus, this is not only an outstanding problem in stem cell systems
biology, but also an area rich in collaborative opportunities between experimentalists and
theoreticians. Consequently, developing a rigorous understanding of stem-cell-fate
determination at the systems level is a significant challenge as well as a great opportunity.
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Figure 1.
Understanding stem cells at the systems level: From genes to networks and landscapes.
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