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Cancer Centre, McGill University, Montréal, Québec, Canada
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Chemotherapies, HIV infections, and treatments to block organ transplant rejection are creating a
population of immunocompromised individuals at serious risk of systemic fungal infections. Since
single-agent therapies are susceptible to failure due to either inherent or acquired resistance, alternative
therapeutic approaches such as multi-agent therapies are needed. We have developed a bioinformatics-
driven approach that efficiently predicts compound synergy for such combinatorial therapies. The
approach uses chemogenomic profiles in order to identify compound profiles that have a statistically
significant degree of similarity to a fluconazole profile. The compounds identified were then
experimentally verified to be synergistic with fluconazole and with each other, in both Saccharomyces
cerevisiae and the fungal pathogen Candida albicans. Our method is therefore capable of accurately
predicting compound synergy to aid the development of combinatorial antifungal therapies.
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Introduction

Drugs that act against individual molecular targets are often
insufficient to combat fungal infections, multigenic diseases
such as cancer, and multiple cell or tissue type diseases, inclu-
ding immune and inflammatory disorders (White et al, 1998;
Sams-Dodd, 2005; Onyewu and Heitman, 2007; Zimmermann
et al, 2007). Combinatorial therapies that impact multiple
targets simultaneously are less prone to development of drug
resistance, and increase therapeutic efficacy (Groll and Walsh,
2002; Zimmermann et al, 2007). One of the major benefits of
combinatorial therapies is the potential for synergistic effects:
that is, the overall therapeutic benefit of the drug combination is
greater than the sum of the effects of the individual agents. In
particular, synergies between the constituent compounds can
provide broader pharmacological windows and reduced toxicity
(Fitzgerald et al, 2006). These advantages have driven drug
discovery efforts towards the search for multi-agent therapies
(Borisy et al, 2003; Fitzgerald et al, 2006; Onyewu and Heitman,
2007; Zimmermann et al, 2007).

Despite the obvious benefits, there are many challenges
associated with the identification of multi-agent therapies.

A sensitive, but low-throughput test for synergy is the dose-
matrix response assay; in its simplest form it tests serial
dilutions of two compounds in all possible permutations. The
results from this assay can be analysed with respect to different
models for quantifying synergy. Each model defines a baseline
efficacy level for the compounds, when used in combination at
concentrations X and Y, describing the expected level if the
compounds are not synergistic. The Loewe additivity model
defines the baseline as the level that would be expected if a
compound were in fact combined with itself (Loewe, 1953).
The Bliss boosting model, an extension of the Bliss indepen-
dence model (Bliss, 1939), defines the baseline level as
IMult¼IXþ IY�IXIY, where IX and IY are the efficacy levels of
the compounds in isolation at concentrations X and Y,
respectively (Lehár et al, 2007). Alternatively, the potentiation
model defines the baseline level as IPot¼max(IX, IY) (Lehár
et al, 2007). The utility of any of these models depends on the
comprehensiveness of the dose-matrix response data.

Large-scale searches have demonstrated that high-through-
put screens of thousands of compounds can be straightforward
(Zhang et al, 2007), but usually these screens can only test a
small fraction of the exponential number of chemical
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combinations available. Moreover, simplified dose-matrix
assays are commonly used by these approaches, but the
simplification may result in a failure to test the compound
concentrations at which synergies occur, and therefore result
in reduced synergy detection. Several lines of research address
these problems (Borisy et al, 2003; Zhang et al, 2007). Some
efforts reduce the scale issue by screening only combinations
that include a particular compound of interest (i.e. by fixing
one component). Other approaches tackle challenges later in
the therapy development pipeline using in silico approaches to
predict how two compounds act on pathways to achieve
additive or synergistic effects (Lehár et al, 2007).

Although improvements in the scale and sensitivity of
synergy identification techniques promise a greater explora-
tion of combinatorial chemical space, it is unlikely that
experimental techniques will be sufficient to completely
survey this vast space in a cost-effective and timely manner.
Consequently, there is a clear need for an approach that
winnows this space to a manageably large set of combinations
that is enriched for synergistic combinations. The combina-
tions in the set could then be rigorously tested experimentally.
A suggested experimental approach to finding this set entails
an iterative ‘maximal damage’ search (Ágoston et al, 2005;
Lehár et al, 2008a). In each iteration of the search, the most
effective combination from the previous iteration is tested with
all other compounds separately to identify a combination that
is more effective. However, this directed strategy starts with
the most effective compound and will thus miss potentiating
synergies between compounds that incur minimal damage
separately. In contrast, an accurate in silico approach would
alleviate this challenge of synergy identification by enabling
comprehensive and efficient exploration of the combinatorial
space. Such a strategy could employ data from single
compound treatments to effectively predict which combina-
tions are most likely to behave synergistically. There are
several approaches in the literature, including that of Nelander
et al (2008), that attempt to use data from perturbation screens
and prior knowledge regarding the targets of compounds to
model the effects of these compounds when they are used
alone or in combination. This approach is currently limited to
compounds with known targets, but such an approach could
potentially be extended to predict synergistic compound pairs
(Nelander et al, 2008).

The use of chemogenomic profiles offers promise for
characterizing the global cellular response to an arbitrary
compound, for predicting the mode of action of a compound,
and for inferring the function of genes. Here we focus
on chemogenomic profiles generated for Saccharomyces
cerevisiae where each member of the yeast gene deletion
library is grown in the presence of a particular compound, and
the resultant growth fitness is recorded. Strains with reduced
fitness in comparison with untreated or wild-type cells suggest
that the loss of particular genes confers sensitivity to the
compound. For example, a set of genes involved in multi-drug
resistance was identified by finding commonalities between
yeast chemogenomic profiles of a chemically diverse panel of
compounds (Parsons et al, 2004; Hillenmeyer et al, 2008). It
has also been established that similarity between chemoge-
nomic profiles often implies a similarity in the mode of action
of the corresponding compounds (Parsons et al, 2006). In other

words, two compounds that induce sensitivity in many of the
same gene deletion strains may target similar cellular path-
ways. Conversely, strains that behave similarly across a panel
of compounds may indicate that the corresponding genes are
functionally related (Haggarty et al, 2003; Lee et al, 2005;
Brown et al, 2006). The ability of chemogenomic profiles to
predict similarities in cellular response, mode of action, and
gene function poses the question as to whether they can be
used to also predict synergy. This aspect has not been
investigated to date and would provide a simple approach to
synergy prediction that does not require prior knowledge of
the targets of compounds and extensive modelling of previous
approaches (Nelander et al, 2008).

We introduce here a combined experimental and bioinfor-
matics approach to identify antifungal synergies. In particular,
for each compound of interest, we obtain a chemogenomic
profile, which we define as a set of genes whose deletions
confer sensitivity to a given compound. The next step is to
computationally measure the similarity between pairs of
profiles. We establish that compound pairs that have
correspondingly similar profiles are more likely to be
synergistic when compared with randomly chosen com-
pounds. This approach exploits the fact that chemogenomic
profiles make compounds instantly comparable in silico:
whereas exhaustive screening of only pairwise combinations
already necessitates a quadratic number of dose-matrix assays,
the computational method requires only a linear number of
chemogenomic profiles and a small number of subsequent
validation assays relative to the total number of possible
combinations. Our approach is thus a practical way to
comprehensively search the vast chemical space for synergistic
compounds.

We validate this method by assessing the antifungal activity
of compound combinations in S. cerevisiae and in the fungal
pathogen Candida albicans. Infections by Candida species are
an increasing problem, especially in patients who are
immunocompromised (Groll and Walsh, 2002). We show that
our approach successfully predicts antifungal synergies that
occur in S. cerevisiae and C. albicans.

Results

Our goal was the identification of compound pairs that exhibit
antifungal synergy. There are two types of antifungal synergy:
the constituent compounds act synergistically to kill fungal
cells (cytotoxic synergy) or arrest growth only (fungistatic
synergy). Although a combination may be fungistatic against
one fungal species, it might exhibit more potent synergy
against others. Therefore, it may be useful to further
investigate whether combinations that are fungistatic against
particular fungal species can be developed into antifungal
therapies against other fungal species.

The collection and generation of chemogenomic
profiles

S. cerevisiae, with its accessible genetic resources, was used
as the model for fungal pathogens. The first step in our
method was to collect from the literature the results of B1300
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genome-wide, sensitivity and lethality screens generated with
a broad range of compounds (Supplementary Table SI). This
set forms our chemogenomic profile collection (Figure 1A).
Although the screens were conducted differently (e.g. with
diploids versus haploids; competitive versus non-competitive
growth), the results of each screen permit the identification of
a set of strains that are hypersensitive to the compound, which
in turn define a set of hypersensitive genes. We focus on this
hypersensitive gene set format of a chemogenomic profile in
our analyses.

Fluconazole, a widely used fungistatic drug with favourable
pharmacokinetic and toxicological properties (Grant and
Clissold, 1990), would be an ideal constituent compound of
a combinatorial antifungal therapy. We thus generated a
de novo profile for fluconazole using the yeast haploid deletion
strain collection (Winzeler et al, 1999). As a control, we used

the hypomorphic strain for the essential gene ERG11 (Schuldi-
ner et al, 2005; Breslow et al, 2008). Fluconazole directly
targets Erg11p and thus specifically inhibits its enzymatic
activity in the biosynthetic pathway for ergosterol, an essential
sterol in yeast (White et al, 1998). As expected, fluconazole
was lethal to the erg11 strain since inhibition of the already
limited cellular amount of Erg11p likely decreased its activity
to fatal levels. Although previous studies have identified
strains that are sensitive to fluconazole (Parsons et al, 2004),
we re-screened the drug to focus on deletions that are lethal in
the presence of fluconazole. The results define a set of genes
that we call FCZ-Fungicidal (Supplementary Table SII). We
next validated the profile by determining the minimum
inhibitory concentration (MIC) and minimum fungicidal
concentration (MFC) for each strain (Figure 1B and Supple-
mentary Table SIII). These values represent dosages where
FCZ-Fungicidal strains are unable to recover after exposure to
fluconazole, unlike wild-type cells.

To exclude the possibility that any secondary mutations
present in the deletion strains were responsible for the FCZ-
Fungicidal phenotype, we complemented the FCZ-Fungicidal
strains with plasmid-borne copies of their respective deleted
genes to demonstrate reversibility of the phenotype. The
presence of the overexpressed gene enabled the transformants
to survive lethal concentrations of fluconazole above their
MFCs (data not shown) without conferring resistance to
fluconazole beyond levels observed for the wild type. There-
fore, the complementation results confirm, for every FCZ-
Fungicidal strain, that the gene deletion is responsible for the
FCZ-Fungicidal phenotype.

Components of the FCZ-Fungicidal set

Of the 4997 deletion strains screened, 21 were unable to
recover after exposure to fluconazole, in addition to the erg11
hypomorphic strain (Supplementary Table SII). Members of
the SAGA histone acetyltransferase complex and genes with
general RNA polymerase-II transcription factor activity (e.g.
members of the mediator complex) are significantly over-
represented in the FCZ-Fungicidal set (adjusted P¼3.7�10�6

and 0.01, respectively; see Materials and methods). Members
of the vacuolar membrane Hþ -ATPase complex and cytoske-
leton genes are also over-represented in the set (adjusted
P¼3.7�10�6 and 0.03, respectively; see Materials and
methods). Taken together, genes involved with transcriptional
regulation, vacuole function, and cell structure are signifi-
cantly associated with sensitivity to fluconazole.

Prediction of synergistic compounds

We assessed whether any given compound pair with a high
level of similarity between its chemogenomic profiles is likely
to exhibit antifungal synergy. A gold standard set of positive
and negative examples of antifungal synergy was assembled
for this purpose (Supplementary Table SIV). Specifically, the
positive and negative examples are synergistic compound
pairs curated from the literature and pairs that we showed are
not synergistic in S. cerevisiae using a dose-matrix response
assay (see Materials and methods; Supplementary Table SV),
respectively. Moreover, the gold standard set is limited to
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Figure 1 A method for identifying synergistic compounds with antifungal
activity. (A) A schematic illustrating the steps of the method. (B) Validation of the
first step: recovery after fluconazole treatment for defining the chemogenomic
profile of the drug. Strains were treated with increasing amounts of fluconazole
(0–128mg/ml) for 24 h before spotting aliquots on YPD and incubating at 301C
for 2 days.
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compound pairs where each constituent compound is asso-
ciated with at least one chemogenomic profile in our
collection. Although it would be interesting to investigate the
potential differences in the accuracy of a synergy predictor
built exclusively from either diploid- or haploid-based
profiles, there are too few gold standard examples that are
associated with both types of profiles to enable such a
comparison (i.e. four positive examples). Similarly, there are
too few examples to compare the accuracy of predictors built
exclusively from either profiles generated from competitive or
non-competitive growth assays (the literature contains only
one positive example). Therefore, the gold standard set,
together with our complete chemogenomic profile collection,
was used to evaluate three different pairwise measures of
chemogenomic profile similarity for their ability to predict
antifungal synergy.

Previous studies suggest that the vast majority of compound
pairs do not exhibit antifungal synergy. For example, Borisy
et al (2003) tested 560 reference-listed compounds (i.e. known
to have some bioactivity) in pairwise combination with
fluconazole using a dose-matrix proliferation assay using
fluconazole-resistant C. albicans. They described one syner-
gistic combination, although they also confirmed 20 combina-
tions as potentially synergistic because each of these
combinations shows an effect that is greater than the baseline
level defined by the highest single-agent model, that is, the
larger of the effects produced by the constituent agents when
they are applied singly. Overall, their results suggest that
0.2–3.6% of the tested combinations exhibit antifungal
synergy (and the limited number of antifungal synergies
reported in the literature in general suggests that synergy is
even rarer in other chemical libraries). The scarcity of synergy
would suggest that the evaluation of a synergy predictor
should place great emphasis on the identification of true
synergies.

It is standard practice to evaluate a predictor by estimating
its receiver-operating characteristic (ROC) curve. However,
applying this type of evaluation to a synergy predictor would
equally emphasize the identification of true synergies and false
positives. Furthermore, the estimated rarity of antifungal
synergy implies that a ROC curve would be estimated with a
very small fraction of all negative examples of synergy in the
chemical space covered by our chemogenomic profile collec-
tion. That is, only 30 out of the estimated B175 000 negative
examples are known in our study, where the total number of
negative examples is based on the estimated frequency of
antifungal synergy, 3.6% (Borisy et al, 2003). A ROC curve
estimated with the small negative gold standard set would
likely hide the utility of the synergy predictor simply because
our sample of negative examples is not sufficiently represen-
tative of the complete negative set. Therefore, instead of
estimating ROC curves, we evaluated each synergy predictor
by estimating to what degree its predictions are enriched for
true synergies. That is, we computed a prediction score for
every positive and negative example in our gold standard set
and estimated to what degree the subset predicted to be
synergistic is enriched with positive examples (with a
hypergeometric test). This type of evaluation places greater
value on the identification of true synergies as desired. We also
estimated the true synergy enrichment of predictions made

using random permutations of our chemogenomic profile
collection (see Materials and methods). The enrichment
estimates from the permutations establish a baseline enrich-
ment distribution. The significance of the true synergy
enrichment from the observed data was computed relative to
this baseline distribution. Significant enrichment would
suggest that testing a set of compound pairs that are predicted
to be synergistic via profile similarity is expected to yield
significantly more true synergies than testing an equal number
of randomly selected compound pairs.

The first measure of chemogenomic profile similarity that
we assessed quantifies the significance of the overlap between
two hypersensitive gene sets (see the example in Figure 2A). In
particular, when x genes are observed in both hypersensitive
gene sets, the measure is the probability of obtaining x or more
genes in the overlap by chance (i.e. a P-value from a
hypergeometric distribution). With this gene-based profile
similarity measure, a compound pair is predicted to be
synergistic if its P-value is less than or equal to a given
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Figure 2 The measures of chemogenomic profile similarity and antifungal
synergy predictions based on these measures. (A) An example of how the gene-
based measure quantifies profile similarity with the hypergeometric test. (B) The
complex-based measure. This measure compares complex-based profiles
derived from hypersensitive gene sets. The similarity between the complex-
based profiles is measured with weighted Pearson correlation. A protein complex
is weighted less if it has many subunits, and all genes that are not annotated to
any complex (i.e. non-complex genes) are assigned maximal weight. (C) A
heatmap of the similarity values of select compound pairs, using the gene-based
measure. The intensity of purple for a pair corresponds to the degree of similarity.
All compounds in the heatmap are predicted as synergistic with fluconazole
(using a threshold of Pp10�6.5), except for camptothecin (included for contrast).
(D) As in panel C, except that the similarity values were computed using the
complex-based measure. AlvC, alverine citrate; CASP, caspofungin; CsA,
cyclosporine-A; FCZ, fluconazole; FEN, fenpropimorph; LatA, latrunculin-A;
TUN, tunicamycin; WM, wortmannin.
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threshold. We evaluated this profile similarity measure as a
synergy predictor at different thresholds (Figure 3A). The
predictions defined by the threshold Pp10�6.5 exhibit a true
synergy enrichment that represents a significant improvement
over the expected baseline level (P¼0.0236; see Figure 3B).
Furthermore, this threshold produces the most significant
improvement and is thus optimal for defining synergy
predictions. Taken together, these results suggest that chemo-
genomic profile similarity predicts antifungal synergy.

We also assessed a chemogenomic profile similarity
measure that accounts for additional commonality that is
observable by viewing the profiles at the level of protein
complexes (Figure 2B). That is, although one subunit of a
protein complex may be associated with sensitivity to one
compound and a different subunit associated with a second
compound, it is nonetheless interesting that the same complex
is associated with sensitivity to either compound. Each profile
was converted into a complex-based profile defined by a list of
0 s and 1 s indicating absence or presence (respectively) of
each complex, and also each non-complex gene, in the
hypersensitive gene set. The similarity between two such
profiles was measured via weighted Pearson correlation. A
protein complex with many subunits is weighted less because
it is less rare for that complex, via any one of its subunits, to be
included in any given hypersensitive gene set. As with the
gene-based profile similarity measure, a compound pair is
predicted to be synergistic if the similarity of the corresponding
profiles is greater than or equal to an optimal threshold. The
enrichment of the predictions with true synergies is more
significant for the complex-based measure than for the gene-
based measure, relative to the expected baseline levels
(P¼0.0092 and 0.0378, respectively; see Supplementary Figure

S1A). Taken together, these results suggest that the complex-
based profile similarity measure can predict synergy more
effectively than the simpler gene-based measure.

Lastly, we assessed a profile similarity measure that exploits
the detailed quantitative data available for a subset of our
chemogenomic profile collection. Namely, for some profiles
each gene is associated with a log2ratio that reflects the growth
of untreated versus chemically treated cells of the relevant
deletion strain (Parsons et al, 2006; Hillenmeyer et al, 2008;
Hoon et al, 2008). We thus considered the correlation across
these log2ratios as a measure of profile similarity. Again, a
compound pair is predicted to be synergistic if the similarity of
the corresponding profiles is greater than or equal to an
optimal threshold. Unlike measures of profile similarity based
on hypersensitive gene sets, enrichment of the predictions
with true synergies is not significant for the log2ratio-based
measure, relative to the expected baseline level (P¼0.3109; see
Supplementary Figure S1A). Therefore, we focus on the gene-
based profile similarity measure as a predictor of synergy
(using the threshold Pp10�6.5) due to its simplicity and
significant enrichment of its predictions with true synergies
(Figure 1A).

Consistent with the evidence that antifungal synergy is rare,
the majority of compound pairs in the chemical space covered
by our chemogenomic profile collection are not predicted to be
synergistic (see the x-axis of Supplementary Figure S2A). In
addition, the estimated accuracy of the predictor (¼0.745) is
significantly above the expected baseline level (P¼0.018; see
Supplementary Figure S2B), despite the fact that the estimate
is likely based on a small fraction of all negative examples. If
instead we over-estimate and assume that all compound pairs
in our chemical space are negative examples (i.e. B182 000
instead of the estimated B175 000 examples, where the total
number of negative examples is based on the estimated
frequency of antifungal synergy, 3.6%; Borisy et al, 2003),
our estimates would be based on a more representative
set of negative examples (see Supplementary Figure S2A for
the ROC curve). At the selected threshold, the estimated true
positive rate is B67% and, using the overlarge negative set,
the estimated false positive rate and accuracy are B5 and
B95%, respectively. Furthermore, the level at which the
predictions are enriched with true synergies would increase if
the number of negative examples in the gold standard set
were to increase and if all new examples were predicted
as true negatives (Supplementary Figure S2C). Taken
together, we have shown statistically that the predictor is
surprisingly accurate and the estimate of its accuracy will
increase as the community develops a more representative
gold standard set. Therefore, we have shown that our
predictor is useful for efficient identification of antifungal
synergies.

The next step in the synergy identification method for our
fluconazole example requires measuring the similarity be-
tween the FCZ-Fungicidal profile and each member of the
chemogenomic profile collection. The FCZ-Fungicidal profile
is significantly similar to 10 profiles (Pp10�6.5) and these
other profiles are associated with eight different compounds
(Supplementary Table SVI). Consequently, eight compounds
are predicted to be synergistic with fluconazole through the
FCZ-Fungicidal profile.

Figure 3 Statistical evaluation of the gene-based chemogenomic profile
similarity measure as a predictor of antifungal synergy. The evaluation is based
on the enrichment of the predictions with true positives/synergies, and higher
values in this figure indicate greater enrichment. Baseline enrichment values
were estimated using random permutations of the data (n¼5000 permutations,
see Materials and methods). The significance of the enrichment estimated from
the observed data is computed relative to the baseline enrichment values.
(A) The true synergy enrichment estimated from observed and randomly
permuted data, at different similarity thresholds. The x-axis shows the �log10

transformation of the threshold values. The triangles indicate the enrichment
values estimated from the observed data, at different thresholds. For each
threshold, the median (o) and interquartile range (whiskers) of the enrichment
values computed from the different permutations are also shown.
(B) The significance of the true synergy enrichment associated with the
predictor used with a threshold of 10�6.5, relative to the permutation distribution
of the baseline enrichment. The red line indicates the enrichment estimated from
the observed data and its P-value of significance is also shown. The threshold of
10�6.5 results in the most significant enrichment and is therefore considered the
optimal profile similarity threshold for defining the synergy predictions.
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Validation of predicted synergies in S. cerevisiae

Of the eight compounds predicted to be synergistic with
fluconazole through the FCZ-Fungicidal profile, seven were
tested for fungistatic and cytotoxic synergy with fluconazole in
S. cerevisiae: latrunculin-A, caspofungin, tunicamycin, cyclospor-
ine-A, FK506, alverine citrate, and wortmannin. Fenpropimorph is
predicted to be synergistic with fluconazole through a different
fluconazole profile (P¼9.20�10�45). Therefore, we also included
fenpropimorph in our synergy tests. In total, eight predicted
fluconazole combinations were experimentally tested for synergy.

We experimentally examined each compound combination
using a dose-matrix response assay that measures the growth
of treated cells. The results were used to quantify growth arrest
synergy using the Loewe additivity model (Loewe, 1953;
Barchiesi et al, 1998) (see Materials and methods; Supple-
mentary Table SV). The dose-matrix response data were also
fitted to Bliss boosting and potentiation models of synergy
(Lehár et al, 2007) (see Materials and methods; Supplementary
Table SVII). There is partial agreement between the results
from the Loewe additivity model and the other models.
However, we chose to identify synergies relative to the additive
compound-with-itself baseline since it is the most conservative
of the tested models. Each dose matrix of treated cells was also
spotted on YPD to examine recovery of the cells post treatment
(Figure 4). Absence of visible colonies after 24 h suggests that
the treatment has some cytotoxic effects. Synergy in terms of
this cytotoxic phenotype was also quantified with the Loewe
additivity model (see Materials and methods). The cytotoxicity
of compound combinations at particular concentrations was
confirmed by a large reduction in the number of colony-
forming units of treated versus untreated cells (data not
shown). Compound combinations that exhibit growth arrest but
not cytotoxic synergy are referred to as exhibiting fungistatic
synergy. Figure 4C and D show examples of fungistatic and
cytotoxic synergy (respectively) in S. cerevisiae.

Five compounds were validated as synergistic with flucona-
zole, including fenpropimorph (Supplementary Figure S3A and
Table SV). Furthermore, we noticed that many of the compounds
predicted to be synergistic with fluconazole are also predicted to
be synergistic with each other (Figure 2C). The same observation
can be made based on predictions with the complex-based profile
similarity measure (Figure 2D). We thus extended our validation
efforts to include 10 pairings of the predicted fluconazole
partners. These pairings include two that are not predicted to
be synergistic: cyclosporine-Aþ fenpropimorph and fenpropi-
morphþwortmannin. Of the 18 experimentally tested combina-
tions in total, 11 showed a synergistic relationship with six and
five demonstrated fungistatic and cytotoxic effects, respectively
(Table I and Supplementary Figure S3 and Table SV). The two
synergies involving fenpropimorph listed above are false
negatives, although they are consistent with the observation that
compounds that are synergistic with fluconazole tend to be
synergistic with each other. Taken together, the results indicate a
validation success rate of 56% in S. cerevisiae.

Validation of predicted synergies in C. albicans

We sought to identify synergies in C. albicans that establish
potential multi-agent therapies, after validating our approach

in the model S. cerevisiae. Four compound pairs that we
identified as synergistic in S. cerevisiae are already described in
the literature as synergistic in Candida species, suggesting that
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(C–F) Growth inhibition levels of cells grown in the presence of the compounds are
shown on the left. The recovery of cells post treatment is shown on the right. (A, B)
Recovery of cells treated with a compound pair that is not synergistic in S. cerevisiae
and C. albicans, respectively. (C, D) Compound pairs that exhibit fungistatic and
fungicidal synergy in S. cerevisiae, respectively. (E, F) Compound pairs that exhibit
fungistatic and fungicidal synergy in C. albicans, respectively.
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our approach may successfully identify synergies in
C. albicans (Table I). Using the dose-matrix response assay,
the 18 combinations tested in S. cerevisiae were tested in
C. albicans resulting in the identification of 10 synergistic
combinations in the fungal pathogen, nine of which are
cytotoxic (see Figure 4E and F for examples of fungistatic
and cytotoxic synergy, respectively, and see Supplementary
Figure S4 for all synergies identified in C. albicans). As before,
we used the Loewe additivity model to quantify synergy

(Supplementary Table SVIII), although we also fitted the dose-
matrix response data to other synergy models (Supplementary
Table SIX). Table I lists the complete set of synergistic
compound pairs that we identified. We showed that eight
synergistic combinations identified in S. cerevisiae are also
synergistic in C. albicans, and we identified two additional
synergies in the fungal pathogen that could not be identified
in S. cerevisiae (caspofunginþfluconazole and fluconazo-
leþ latrunculin-A). Taken together, the validation success rate
for the predictor of antifungal synergy is 69%. This implies
that our method identifies true synergies at a rate that is B20-
fold better than the estimated rate for testing randomly
selected compound pairs.

Finally, we tested one of the novel synergistic combinations
in fluconazole-resistant clinical isolates of C. albicans. These
strains acquired fluconazole resistance by mutations that
either lead to upregulation of the target of fluconazole (ERG11,
strain S2; Dunkel et al, 2008), or increased the expression of a
multi-drug efflux pump (MDR1, strain G5; Morschhauser et al,
2007). We chose to test fluconazole (FDA-approved) in
combination with wortmannin, analogues of which are in
phase-I clinical trials (Noble et al, 2004). Even when applied at
concentrationsB1000-fold higher than the MIC in correspond-
ing wild-type strains, fluconazole has no readily detectable
effect on cell growth in the clinical isolates. However, the
combination of fluconazole and wortmannin exhibits a strong
cytotoxic effect (Figure 5), suggesting potential clinical
relevance.

Table I Compound pairs that exhibit antifungal synergy

Compound pair S. cerevisiae C. albicans

AlvC+FCZ Fungistatic Cytotoxic
CASP+FCZ — Cytotoxic
CsA+FENa Fungistatic Cytotoxic
CsA+FCZa Cytotoxic Cytotoxic
CsA+TUN Cytotoxic Cytotoxic
FEN+FK506a Fungistatic —
FEN+FCZ Fungistatic Fungistatic
FEN+WM Cytotoxic —
FK506+FCZa Fungistatic Cytotoxic
FK506+TUN Cytotoxic Cytotoxic
FK506+WM Cytotoxic —
FCZ+LatA — Cytotoxic
FCZ+WM Cytotoxic Cytotoxic

AlvC, alverine citrate; CASP, caspofungin; CsA, cyclosporine-A; FCZ, flucona-
zole; FEN, fenpropimorph; LatA, latrunculin-A; TUN, tunicamycin; WM,
wortmannin.
aPreviously shown to be synergistic.
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Figure 5 The dose-matrix recovery from treatment with fluconazole and wortmannin, a compound pair exhibiting antifungal synergy in (A) the multidrug-resistant
clinical C. albicans isolate G5 and (B) the fluconazole-resistant clinical C. albicans isolate S2. Solvent controls are shown on the left.
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A comparison of predictors dependent on haploid-
and/or diploid-based profiles

After adding our novel synergistic compound pairs to the gold
standard set of antifungal synergies, we revisited the question
of whether the type of chemogenomic profiles used by the
synergy predictor influences the enrichment of its predictions
with true synergies. We therefore measured the significance of
the enrichment associated with predictors dependent on
haploid-based profiles only, diploid-based profiles only, and
both haploid- and diploid-based profiles. However, this
comparison could only be made using profiles generated from
a competitive growth assay (i.e. the assay can use haploids or
diploids) since there is an insufficient number of gold standard
examples to also make the comparison in the context of
profiles generated from a non-competitive growth assay.
Although augmenting the gold standard set with validated
synergies from this study may bias the enrichment values, all
three predictors were subjected to the same bias since they
were all evaluated with the same gold standard set, and here
we are only interested in comparing the predictors relative to
each other. As before, optimal prediction thresholds were
selected for each of the three variants of the synergy predictor
in the comparison. Our results suggest that the variant that
exclusively uses haploid-based profiles produces predictions
that are enriched with true synergies most significantly relative
to the expected baseline enrichment level, followed by the
variant that uses both haploid- and diploid-based profiles and
the variant that exclusively uses diploid-based profiles
(P¼0.0372, 0.0572, and 0.0794, respectively; see Supplemen-
tary Figure S1B). However, our collection of haploid-based
profiles contains data for only 20 compounds. Therefore, it is
currently best to use all types of chemogenomic profiles with
our approach for better coverage of chemical space, and thus,
for enabling potential identification of more synergistic
combinations.

Our results show that chemogenomic profile similarity
predicts antifungal synergy. The similarity values for all
pairings of the chemogenomic profiles in our collection are
contained in Supplementary Table SX. These data can be used
immediately to identify compound pairs that are likely to
exhibit antifungal synergy, and thus should stimulate the
search for effective combinatorial therapies.

Discussion

We have developed a bioinformatics-driven approach using
chemogenomic profiles to predict compound pairs that exhibit
antifungal synergy. First, we collected sensitivity-based
chemogenomic profiles from the literature and generated a
profile in S. cerevisiae for the widely used fungistatic drug
fluconazole. We then showed statistical evidence supporting
the use of our gene-based measure of profile similarity for
predicting synergistic compound pairs. Our predictions of
synergistic compound pairs validated with a high success rate.
Overall, the results confirm that chemogenomic profile
similarity can predict antifungal synergies.

Chemogenomic profiles can be generated in several ways.
As more profiles of different type become available, it would be
interesting to further investigate the relative utility of each type

for the prediction of synergy. Our collection includes profiles
based on competitive or non-competitive growth of diploids or
haploids. Despite the heterogeneity of our collection, we used
it in its entirety for better coverage of chemical space when
predicting antifungal synergies. For example, had we limited
the chemogenomic profile collection to haploid-based profiles,
the cytotoxic synergy involving latrunculin-A would not have
been predicted because a haploid-based profile was not
generated for this compound. Despite the expected differences
in the profiles simply due to the different ways in which they
were generated, our approach was able to identify synergies
based on the similarity between profiles generated with
different methods (e.g. the FCZ-Fungicidal profile derived
from non-competitive growth of haploids and the latrunculin-
A profile derived from competitive growth of diploids).
Therefore, different types of profiles may lead to false
negatives; however, our approach generates predictions that
are enriched with true antifungal synergies more significantly
than what is expected by chance.

A chemogenomic profile encodes the genes involved in
resistance to a particular compound (Lee et al, 2005; Parsons
et al, 2006). If the profiles of two compounds are similar, there
is likely some underlying drug-resistance machinery to which
both apply stress. Cells treated with both compounds
concurrently may not be able to mount an effective response
to the challenge, and the compounds thus exhibit antifungal
synergy. Previous studies have identified drug-resistance
machinery (Parsons et al, 2004). Interestingly, the FCZ-
Fungicidal set (Supplementary Table SII) includes the pleio-
tropic drug pump PDR5, genes that regulate the transcription
of this pump as members of the SAGA and mediator complexes
(Gao et al, 2004), and genes with vacuolar functionality. In
short, the FCZ-Fungicidal set includes genes that have
previously been associated with drug resistance. Our method,
therefore, exploits the drug-response machinery identified by
chemogenomic profiling to predict synergy.

The FCZ-Fungicidal set also includes genes associated with
the cytoskeleton or cell wall, two of which (BEM2, SLT2) are
synthetically lethal with the target of fluconazole, ERG11
(Parsons et al, 2004). It is possible that these genes become
vital for maintaining the structural integrity of the cell to
compensate for the instability that may result from reduced
ergosterol production. This is a possible explanation for
why these genes are associated with resistance to fluconazole
(i.e. if the genes are deleted, cells are hypersensitive to the
drug). By similar reasoning, we would expect these genes to be
associated with resistance to latrunculin-A, a compound that
disrupts the actin cytoskeleton (Ayscough et al, 1997). Indeed,
the hypersensitive gene set of latrunculin-A overlaps signifi-
cantly with the FCZ-Fungicidal set, and the overlap includes
genes associated with the cell wall or cytoskeleton (Supple-
mentary Table SVI). Latrunculin-A was thus predicted as
synergistic with fluconazole and this synergy was subse-
quently shown in C. albicans. Therefore, the FCZ-Fungicidal
genes provide mechanisms to generate synergy.

Previous work suggests that compounds with similar
chemogenomic profiles have similar modes of action (Parsons
et al, 2004). However, in both S. cerevisiae and C. albicans we
identified synergy between fluconazole and cyclosporine-A,
which target ergosterol biosynthesis (White et al, 1998) and

Chemogenomic profiling predicts antifungal synergies
G Jansen et al

8 Molecular Systems Biology 2009 & 2009 EMBO and Macmillan Publishers Limited



calcineurin (Wang and Heitman, 2005), respectively. While
fluconazole and cyclosporine-A profiles have distinguishing
features (as expected due to the distinct targets of the
compounds), our method uses a statistic that recognizes the
profile similarities as significant, given what is possible by
chance. That is, five genes in the overlap of the hypersensitive
gene sets is in fact highly significant given that there are
B5000 possible genes for each set (with B20 genes). As a
predictor, our gene-based measure of profile similarity is thus
useful for identifying synergies that might be unexpected given
what is already known about the participating compounds.

The results establish that our method predicts synergy well
in S. cerevisiae. It can also predict synergy in C. albicans based
on chemogenomic profiles in S. cerevisiae. Despite differences
in regulatory circuitry that have been observed between the
fungal species (Martchenko et al, 2007; Hogues et al, 2008;
Tuch et al, 2008), the majority of the synergies identified in
C. albicans were transferred directly from S. cerevisiae. This
suggests that the predicted synergies could be tested in
C. albicans immediately, without first testing the predicted
combinations in S. cerevisiae to filter out unlikely candidates.
We have, therefore, shown that our method effectively uses
S. cerevisiae resources to identify antifungal synergies in
C. albicans. Furthermore, our method predicts synergies
previously shown in other fungal pathogens (see Supplemen-
tary Table SIV for references) and it would thus be interesting
to further investigate whether our method can predict broad-
spectrum antifungal combinations that exhibit synergy.

We also statistically evaluated an alternative profile similarity
measure, based on the correlation of log2ratios that quantify the
growth of untreated versus treated cells, as a predictor of
antifungal synergy. We found that this measure predicts synergy
markedly worse than the validated gene-based measure
(Supplementary Figure S1A). Interestingly, the gene-based
measure compares log2ratio profiles by first converting them
into hypersensitive gene sets. This suggests that the quantitative
profile data that are useful for predicting synergy are effectively
summarized by a hypersensitive gene set.

Our method for predicting antifungal synergy clearly
requires chemogenomic profiles for compounds. Although
construction of a chemogenomic profile for a compound is a
significant task, the profile would be a beneficial resource in
general because it is a multi-valued description of the
bioactivity of a compound and can be used in all future
studies. In fact, the number of published chemogenomic
profiles is increasing (Lehár et al, 2008b) and as a result, the
scope of our synergy prediction method is expanding.

Moreover, an alternative profile similarity measure was
defined to enable analysis at the protein complex level.
Statistical evaluation of this measure as a predictor of
antifungal synergy (using the gold standard set) suggests that
the measure actually predicts synergy better than the validated
gene-based approach (Supplementary Figure S1A), although
this may be an artefact of the small size of the gold standard
set. Nevertheless, in combination with a variant of the
complex-based measure, it may therefore be feasible to predict
synergy using chemogenomic profiles built solely from strains
pertaining to key members of protein complexes, thereby
reducing the scale of the screening task. This would represent
another important advance in our methodology.

In addition, our method is efficient because it is capable of
reducing a huge set of all possible compound pairs down to a
set of manageable size for thorough synergy testing in fungi
and indeed may be applied to other organisms. Our results
show that compounds that are synergistic with fluconazole
tend to be synergistic with each other, suggesting that our
method is also able to identify compound synergy clusters.
Overall, the net gain from our method is greater compared with
that from traditional screens since costs are reduced and
sensitivity is increased.

Importantly, our method identified novel drug relationships,
including cytotoxic synergy between fluconazole and wort-
mannin in S. cerevisiae, C. albicans and drug-resistant clinical
isolates of C. albicans. Fluconazole is an FDA-approved drug
and wortmannin analogues are in phase-I clinical trials (Noble
et al, 2004). The method has thus uncovered a new synergistic
combination that can be pursued as a viable therapy.

Combinatorial therapies have been widely used in different
medical scenarios (Keith et al, 2005; Zimmermann et al, 2007).
However, to discover new combinations using the vast number
of compounds available (410 million compounds available—
http//www.emolecules.com), screening strategies must be
adapted to address the scale of the discovery task. We have
developed a powerful tool for rapid synergy discovery that
represents a promising step towards realizing the potential of
combinatorial therapies. We have validated this approach with
antifungal combinations and pointed out a potential path to
attack the persisting problem of drug-resistant C. albicans
strains in the clinic. It would thus be interesting to investigate
whether our approach can be used to streamline the
combinatorial therapy development process in other thera-
peutic situations.

Materials and methods

Strains and media

The S. cerevisiae haploid strain BY4741 (MATahis3D1 leu2D0 met15D0
ura3D0) and the complete yeast deletion array collection in the BY4741
background were obtained from the American Type Culture Collection.
S. cerevisiae was cultured in rich media (YPD), synthetic complete
media (SC), or synthetic drop-out media (SD-ura); for solid media 2%
agar was added. The C. albicans wild-type strain SC5314, as well as the
fluconazole- and multi-drug-resistant strains S2 (Dunkel et al, 2008)
and G5 (Morschhauser et al, 2007), respectively, were cultured in
YPDU media (YPD supplemented with 50 mg/l of uridine); for solid
media 2% agar was added. Amiodarone, benomyl, camptothecin,
carboplatin, fenpropimorph, FK506, fluconazole, mycophenolic acid,
myriocin, tunicamycin, and wortmannin were dissolved in DMSO;
chlorpromazine, desipramine, doxycycline, MMS, and nystatin were
dissolved in water; and cyclosporine-A was dissolved in ethanol.
Fluconazole was a gift from Pfizer Limited (Sandwich, Kent, UK),
caspofungin was a gift from Merck Frosst Limited (Kirkland, Québec,
Canada) and all other compounds were purchased from Sigma.

Library screen to generate the lethality-based
chemogenomic profile for fluconazole

Ninety-six-well plates containing the American Type Culture Collec-
tion S. cerevisiae deletion strains were replicated with a 96-pin
replicator (Boekel) to single-well Omnitray plates (Nalgene Nunc)
containing YPD agar and geneticin (200 mg/ml), and, simultaneously,
to plates containing YPD agar and fluconazole (85mg/ml). The plates
were incubated at 301C for 48 h. Following incubation, cells on the YPD
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control and fluconazole plates were replicated to fresh YPD plates
(without fluconazole) and incubated at 301C for 48 h. Plates were
scored for deletion strains that were unable to grow after exposure to
fluconazole. Strains that fit this criterion were subsequently retested in
MIC and recovery assays (see below). The deletion strains that were
unable to recover from fluconazole at concentrations that in contrast
did not affect wild-type cells, were assigned a score of 1 in the
chemogenomic profile and all other strains were assigned 0. Moreover,
genes associated with the deletion strains with score 1 define our
hypersensitive gene set for fluconazole (i.e. the FCZ-Fungicidal set).

MIC assays, recovery assays, and compound
synergy tests in S. cerevisiae and C. albicans

Antifungal sensitivity testing was performed with a modified version
of the CLSI (formerly NCCLS) procedure (NCCLS. Reference Method
for Broth Antifungal Susceptibility Testing of Yeasts: Approved
Standard-Second Edition. NCCLS document M27-A2). Briefly, over-
night cultures of the wild-type and deletion strains were diluted to
an OD600 of 0.0005 for S. cerevisiae and OD600 0.001 for C. albicans.
Volumes of 50ml of culture were inoculated into 96-well flat-bottom
plates containing 50ml of SC media for S. cerevisiae and YPD media
for C. albicans with increasing concentrations of compound (in
twofold serial dilutions). The cultures were grown without shaking at
301C for 24 h and OD600 measurements were taken with a Tecan Safire
microplate monochromator reader (Tecan, Austria, GmbH). The MIC
was determined by the first well with a growth reduction of at least
95% in the presence of a compound as compared with untreated cells.
Cells were then spotted (2ml) onto YPD plates and incubated at 301C
for 48 h to assess the extent to which cells recover from the treatments.
The MFC of a given strain was determined from these recovery assays
(Supplementary Tables SV and SVII).

Compound synergy interactions were assessed by growth in a dose-
matrix titration assay. Volumes of 50 ml of each compound were
twofold serially diluted in SC media for S. cerevisiae and YPD media
for C. albicans, and dispensed into 96-well flat-bottom plates, either
across columns of the plates (compound-A) or down rows of the plates
(compound-B). Wells were then inoculated with 50ml of wild-type
yeast prepared as in the MIC assay. Plates were incubated at 301C
without shaking and OD600 measurements were taken after 24 h. MICs
were determined for the compounds alone and in combination by the
first well, with X95% decrease in absorbance relative to the control.
The growth arrest synergy of a compound pair was quantified
with respect to the Loewe additivity model (Loewe, 1953) through
the fractional inhibitory concentration index (FICIgrowthArrest)¼
(MICA in combo/MICA alone)þ (MICB in combo/MICB alone). Acompound pair
is classified as synergistic if its FICI is p0.5, the standard threshold
(Loewe, 1953; Barchiesi et al, 1998). Cells were also spotted (2ml) onto
fresh YPD plates and incubated at 301C for 24 h to test for cytotoxic
synergy. The minimum cytotoxic concentration (MCC) was defined for
a compound alone and in combination as the lowest concentration that
did not result in visible colonies on the plate. Cytotoxicity was
confirmed by measuring colony-forming units (CFUs) after compound
treatment. Cells were treated with both compounds at their MCCs, then
plated on YPD plates and CFUs were counted after 48h incubation
at 301C. The cytotoxic synergy of a compound pair was quantified as
FICIcytotoxic¼(MCCA in combo/MCCA alone)þ (MCCB in combo/MCCB alone).
A compound pair was classified as exhibiting fungistatic synergy if we
identified the pair as synergistic with respect to the growth arrest
phenotype only.

Complementation assay

To demonstrate that fluconazole sensitivity was dependent on
particular gene deletion and not on acquired secondary mutations,
the deletion strains were transformed with plasmids carrying their
respective deleted genes expressed from the galactose-inducible GAL1
promoter (Gelperin et al, 2005; Jansen et al, 2005). The transformants
were incubated in two sequential overnight cultures. Cells were
diluted and treated with fluconazole as described above and then
incubated at 301C for 24 h. After incubation, 2ml of cultures were
spotted onto fresh YPD plates, incubated at 301C for 2 days, and scored

for growth. The complementation test was performed under both
inducing (SC: 4% galactose) and non-inducing (SC: 2% glucose)
conditions.

The chemogenomic profile collection

We collected the results of compound sensitivity screens described in
the literature. Different screens used different schemes to score each
deletion strain based on its observed level of sensitivity to a given
compound (and the complete set of strain scores defines the
chemogenomic profile of the compound). For each chemogenomic
profile, we identified strains that were scored as moderately to highly
sensitive to the compound by noting the strains with scores that
surpass the threshold specified in Supplementary Table SI. The genes
associated with these strains define the hypersensitive gene set of the
compound.

Annotations of the FCZ-Fungicidal genes

Descriptions of the FCZ-Fungicidal genes were downloaded from the
Saccharomyces Genome Database (SGD; ftp://ftp.yeastgenome.org/
yeast/). Gene Ontology (GO)-based gene annotations (Ashburner et al,
2000) were used to test whether particular biological processes,
molecular functions, and cellular components are significantly over-
represented in the FCZ-Fungicidal gene set. For each GO gene set,
a P-value was obtained from a hypogeometric test performed within
the scope of the set of genes associated with strains that were used in
the FCZ-Fungicidal screen. The P-values were adjusted for multiple
comparisons using the Benjamini and Hochberg method (Benjamini
and Hochberg, 1995).

The gold standard set

A gold standard set of positive and negative examples of antifungal
synergy was assembled to evaluate the synergy predictors (Supple-
mentary Table SIV). Specifically, the 21 positive examples are
synergistic compound pairs curated from the literature. The 30
negative examples are pairs that we showed are not synergistic in
S. cerevisiae using a dose-matrix response assay (Supplementary
Table SV).

The measures of chemogenomic profile similarity

Consider profiles A and B and their associated hypersensitive gene sets
GA and GB, respectively. Let UA and UB represent the sets of all genes
associated with strains that were screened to generate profiles A and B,
respectively. UA and UB may differ if, for example, one screen involved
essential genes (through heterozygous strains) and the other did not.
We define U¼UA-UB as the scope of the statistical test that measures
the similarity between profiles A and B, and therefore compute
GA
0¼GA-U and GB

0¼GB-U.
The gene-based profile similarity measure compares the hypersen-

sitive gene sets associated with the profiles. The measure is defined as
the P-value obtained from a hypergeometric test that quantifies the
significance of |GA

0-GB
0| (i.e. the probability of obtaining an equal or

larger number by chance), given |GA
0|, |GB

0| and |U|.
The complex-based profile similarity measure compares hypersen-

sitive gene sets that have been transformed into complex-based
profiles (Figure 2B). Mappings of genes to GO-defined protein
complexes were downloaded from SGD. Let Ci represent the set of
genes associated with complex i. The GO hierarchy subdivides some
complexes into its constituent domains. In these cases, we treat each
domain as a separate complex, and the genes associated with the
domains are removed from the gene set of the parent complex (to avoid
redundancy). For protein complex i, we compute Ci

0¼Ci-U. If
G0-Ci

0a+, we say that complex i is present in G0, else it is absent.
We generate a complex-based profile xA, defined as a vector of 0 s and
1s indicating absence or presence (respectively) of each complex, and
also each non-complex gene, in GA

0. Similarly, xB was generated with
GB
0. The similarity between xA and xB is measured via weighted
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Pearson correlation. Each non-complex gene is assigned a full weight
of 1 and complex i is assigned a weight equal to 1/|Ci

0|. That is, a
protein complex with many subunits is weighted less because it is less
rare (and thus less significant) for that complex, via any one of its
subunits, to be present in any given G0.

The log2ratio-based profile similarity measure compares profiles
that have log2ratio sensitivity scores. The log2ratios quantify the
growth of untreated cells versus treated cells. We define yA as the
vector of log2ratios of profile A, with one value specified for each gene
in U. Similarly, we define yB for profile B, retaining the same gene order
that is used in yA. The similarity between yA and yB is measured with
Pearson correlation.

Synergy prediction

Our chemogenomic profile collection may contain several different
profiles associated with a single compound. For example, these
profiles may have been generated with different assays and/or
different concentrations of the compound. For compounds A and B,
every profile for A is compared to every profile for B. The similarity
value for the compound pair is defined as the best similarity value
obtained from all the pairwise profile comparisons. For the gene-based
profile similarity measure, the best is the lowest P-value. If the
similarity value of a compound pair is less than or equal to some
threshold, the pair is predicted to be synergistic. For the complex-based
and log2ratio-based measures, the best similarity value is the highest
correlation value. For these measures, a compound pair is predicted to
be synergistic if its similarity value is greater than or equal to some
threshold.

For the comparison of the three profile similarity measures as
predictors of synergy (Supplementary Figure S1A), a reduced gold
standard set was used to evaluate each predictor (16 and 24 positive
and negative examples, respectively). Each compound pair in the
reduced set is associated with log2ratio profiles since the log2ratio-
based measure requires these types of profiles (see Supplementary
information).

Similarly, for comparison of the gene-based measure predictors
dependent on haploid-based profiles only, diploid-based profiles only,
and both types of profiles (Supplementary Figure S1B), a different gold
standard set was used to evaluate these predictors (10 and 16 positive
and negative examples, respectively). Each compound pair in the set is
associated with both haploid-based and diploid-based profiles, and all
the profiles were generated from a competitive growth assay. To avoid
an extremely small number of positive examples, the set includes
synergies validated in this study (see Supplementary information).
Even so, there is insufficient number of gold standard examples to also
make the comparison in the context of profiles generated from a non-
competitive growth assay.

We evaluated each variant of the synergy predictor based on the
significance of enrichment of its predictions with true positives/
synergies, relative to the expected baseline level (see section
Permutation analysis below). The optimal profile similarity threshold
for defining the predictions of each variant is therefore the threshold
that results in the most significant enrichment.

Permutation analysis

The chemogenomic profile labels were permuted 5000 times in order
to estimate the baseline levels of different statistics, for each variant of
the synergy predictor. For each type of profile (the type of each profile
is specified in Supplementary Table SI), the labels were randomly
permuted among all profiles of that type. This preserves any systematic
differences between profiles of different type. However, we excluded
permutations where at least one profile label is assigned to a profile
corresponding to the same compound. For example, this could
potentially occur when there are multiple profiles generated with
different concentrations of the same compound. Additional restric-
tions were applied, depending on the type of analysis. For comparison
between the three profile similarity measures, permutations were only
performed across log2ratio profiles. For comparison of predictors
dependent on haploid-based profiles only, diploid-based profiles only,
and both types of profiles, permutations were only performed across

profiles generated from a competitive growth assay. In addition,
permutations were performed only across haploid- and diploid-based
profiles for predictors exclusively dependent on haploid- and diploid-
based profiles, respectively.

With each permutation, synergy predictions were made using a
given variant of the predictor at different thresholds. We computed a
statistic quantifying the enrichment of the predictions (defined by the
optimal threshold) with true synergies. That is, the P-value obtained
from a hypergeometric test that equals the probability of obtaining an
equal or larger number of positive examples predicted to be synergistic
by chance, given the numbers of positive examples, negative
examples, and predicted synergies in the given gold standard set. For
the final predictor, the predictions were also used to compute the
accuracy at the optimal threshold.

For each statistic z (e.g. the enrichment P-value), a permutation
distribution of the baseline value was obtained by collecting the
computed values from all 5000 permutations. Moreover, the signifi-
cance of the value computed with the observed/real data (zobs) relative
to the expected baseline value was quantified as P¼(xþ 1)/(nþ 1),
where x is the number of permutations with a z value better than or
equal to zobs and n¼5000, the number of permutations in this case
(Moore et al, 2009).

Fitting to other models of synergy

For each compound pair that was experimentally tested for synergy,
Bliss boosting and potentiation models of synergy were fit to the dose-
matrix response data (Lehár et al, 2007). First, the OD600 values were
used to compute a corresponding matrix of % inhibition values (I)
relative to untreated cells. Model fits to the inhibition data were then
obtained as previously described (Lehár et al, 2007). The sum-of-
squared fit errors (SS)¼S(Iobserved–Ifit)

2 was computed for each
model. The best fit model was defined as the first consistent model,
with the Bliss boosting model considered before the potenti-
ation model because it is less complex. We define consistent as
|SS–SSmin|oSSmin, where SSmin is the minimum SS of the two models.

A Bliss boosting surface is defined by IBliss¼IXþ IYþ
(b�Emin)[(IXIY)/(EXEY)], where IBliss is the Bliss boosting inhibition
level when both compounds are used in combination, with the first
and second compounds used at concentrations X and Y, respectively. IX
and IY are the inhibition levels when the first and second compounds
are used alone at concentrations X and Y, respectively. EX and EYare the
maximum inhibition levels achievable by the first and second
compounds, respectively, and Emin¼min(EX, EY); b is the fitted
parameter and it represents the amount of boosting above max(EX,
EY). Reference values of b indicate cancelling, suppressive, masking,
multiplicative, and saturating levels of Bliss boosting. The selected
Bliss boosting level of a compound pair is defined as the first consistent
level (in the order shown above), where consistent is defined as
|Db�Dbmin|oDbmin, with Db¼|b�bref| for some reference level bref,
and bmin is the minimum Db across all reference levels.

A potentiation model surface is defined by IPotent¼max(IX(C), IY),
where IX(C) is the inhibition level when the potentiated compound is
used alone, at a shifted concentration C. We have that C¼X[1þ (Y/
Ypot)

|p|]sign(p), where Ypot and p are fitted parameters, representing the
concentration of the potentiated compound above which potentiation
occurs and the potentiation slope, respectively (Lehár et al, 2007).
P¼0, P40, and Po0 indicate no potentiation, synergy, and antagon-
ism, respectively. For each compound pair, the inhibition matrix was
fitted to this model twice: the first time assuming that the first
compound is potentiated, and the second time assuming that the
second compound is potentiated. Of the two fits, we report the one
with the lower SS (Supplementary Tables SVII and SIX).

All computational analyses were performed in the R statistical
software framework (R Development Core Team, 2007).

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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