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Residing beneath the phenotypic landscape of a plant are

intricate and dynamic networks of genes and proteins. As

evolution operates on phenotypes, we expect its forces to

shape somehow these underlying molecular networks. In this

review, we discuss progress being made to elucidate the

nature of these forces and their impact on the composition and

structure of molecular networks. We also outline current

limitations and open questions facing the broader field of plant

network analysis.
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Introduction
Complex plant traits, such as the clever mimicry of orchid

flowers and exploratory dances of pea tendrils, are true

puzzles of nature. In some instances, the molecular pieces

to a puzzle sit scattered on the table, but we have little

idea how they integrate to enable the final masterpiece. In

other cases, we may see the puzzle’s final form, but have

trouble recognizing the pieces. One way to investigate

such biological puzzles and the molecular pieces that

conspire to produce them is to model them using net-

work-theory-based approaches [1].

In network analysis, complex systems are modeled as

networks whose functional components are represented

as nodes and the relationships among them as edges, or

links, between nodes. For example, in a protein–protein

interaction network, nodes represent proteins and edges

depict a physical interaction between two nodes

(Figure 1). A variety of biological systems have been

investigated on a genome-wide scale using network

analysis, including protein–protein interaction, meta-

bolic, gene co-function, co-expression, and regulatory
www.sciencedirect.com 
networks. Current genome-wide network reconstructions

have typically targeted simple, unicellular organisms such

as yeast and bacteria, which benefit from a large amount

of available omics-type data. With the exception of gene

co-expression networks, only a limited number of gen-

ome-scale biological networks have been reconstructed

for plants due to a lack of appropriate data (Table 1).

The graph-based network analyses we discuss here pro-

vide static portraits of molecular networks. While these

snapshots capture an important perspective on a net-

work’s fundamental structure and organization, they do

not provide a dynamic view of its behavior. A number of

modeling frameworks attempt to portray the dynamic

properties of networks, including those based on ordinary

differential equations and dynamical Bayesian networks,

among others [2]. However, the absence of sufficient

experimental data is a common obstacle for all network

modeling approaches, with genome-wide kinetic data

being particularly limited.

Several reviews describe how to reconstruct genome-

wide molecular networks and how to use them in a variety

of research problems [1,3�,4,5�,6]. Here we focus on the

problem of how biological networks evolve, an emerging

pursuit sometimes called ‘evolutionary systems biology’

[7��,8]. These studies attempt to understand how evol-

ution has shaped the composition, structure, and function

of biological networks. Many of the findings we discuss

deal primarily with bacterial and yeast networks. As more

genome-scale plant networks become available, we

expect a greater focus to be placed on investigating net-

work evolution in plants.

Evolution of network composition
Gene duplication as a driving force for node evolution

How do nodes evolve and what evolutionary forces

shape their divergence? Nodes in a molecular network

typically represent genes and proteins. Genes can dupli-

cate at the single-gene, chromosome, and whole-gen-

ome level and these events provide a means for the

addition and functional divergence of network nodes

[9]. For example, many innovations in metabolic net-

works come from duplications of existing enzymes

[10,11�,12]. More so than single-gene duplications,

whole-genome duplications have the potential to create

large-scale changes in molecular networks. For example,

the evolution of a protein–protein interaction network of

transcription  factors in several plant species can be

mainly attributed to successive rounds of whole-genome

duplications, as opposed to small-scale duplication

events [13].
Current Opinion in Plant Biology 2012, 15:177–184
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Figure 1

OR

Metabolic network

Co-expression network

Protein-protein interaction network

Genetic interaction network

Co-function network

Regulatory network

metabolite

protein

gene

shared metabolite

physical interaction

genetic interaction

similar expression pattern

regulation (positive or negative)

shared metabolic enzyme

(a)

(b)

FRL1

GAIRGA1

ATMPK18

PAD1AT3G05625

JAZ9/TIFY7

Seed germination and
gibberellin and
jasmonic acid signaling 

Current Opinion in Plant Biology

Nodes and edges can depict a variety of molecular components and

their interactions within molecular networks. (a) Nodes of a molecular

network typically represent genes, proteins, or chemical compounds.

Edges signify a biological relationship between nodes. For example, in a

co-expression network, two genes that display similar transcriptional

patterns are depicted as nodes with an edge linking them. In some

networks, edges may be directional, as seen in a regulatory network,

where a node representing a protein is linked to a gene whose

expression level it regulates. Note that in this example, a node can

represent either a protein or a gene. Co-function networks are unique in

that the edges represent a high likelihood that two genes have similar

function. Edges are based on the integration of a variety of genome-

scale functional data. Table 1 describes the types of nodes and edges

found in common molecular networks and contains references to

examples of these networks in plants. (b) An example molecular network

composed of interactions among Arabidopsis proteins involved in seed

germination and gibberellin and jasmonic acid signaling, mapped by

yeast two-hybrid analysis, elucidates a functional module.Adapted from

[17��].
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After a duplication event, genes can either be lost or

retained. Unraveling the dynamics, mechanisms, and

causes of genome architecture reorganization after dupli-

cation is an active area of research [9]. One possible reason

for retention within metabolic networks is a boost in

metabolic flux resulting from the existence of additional

copies of the enzyme-encoding gene [14]. While

increases in flux may be a source of selective advantage,

other possible factors for retention also include: (1) com-

pensation for genetic malfunctions; (2) maintenance of

gene balance, according to the gene dosage balance

hypothesis [15]; (3) subfunctionalization, in which gene

pairs diversify in the timing or location of their activity;

and (4) neo-functionalization, where duplicated genes

handle separate functional roles [9,16]. However, deter-

mining the existence and relative effects of these factors

in network evolution is challenging as experimental evi-

dences are limited, and in some cases (sub- and neo-

functionalization), innovations in measuring their effects

are needed.

Rewiring of edges during network evolution

Molecular networks can diversify not only through the

introduction of new nodes, but also as a result of rewiring

events in which edges are gained or lost. A gain of an edge

between two nodes represents the appearance of new

functionality, such as when an enzyme within a metabolic

network evolves to catalyze a new substrate. The loss of

an edge can result in functional divergence, as when

duplicate copies of a protein evolve to bind different

interaction partners, losing a subset of their initial inter-

actions in the process. Such rewiring of interactions

among sets of duplicated proteins has contributed to

the functional divergence of the protein–protein inter-

action network in Arabidopsis [17��]. Furthermore, the

frequency of rewiring in the Arabidopsis protein–protein

interaction network has differed depending on the type of

duplication. Protein pairs derived from whole genome

duplication events retained their interactions to a greater

degree than those generated by small-scale gene dupli-

cations, suggesting that relative modes of duplication

have distinct roles in the addition and divergence of

edges during network evolution [18].

How fast can network edges be rewired? Different types

of molecular networks undergo edge rewiring at different

rates. Across eukaryotic protein interaction networks,

these rates are estimated to average 10�5 to 10�6 inter-

actions per protein pair per million years of divergence

[19,20]. By contrast, transcriptional regulatory networks

appear to experience higher rewiring rates [21��], while

natural selection apparently has not favored extensive

rewiring among subunits of protein complexes [22].

As with node evolution, unearthing the mechanisms

that drive network rewiring is a formidable challenge.

Posited mechanisms, such as gene duplication followed
www.sciencedirect.com
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Table 1

Different types of genome-wide molecular networks

Network Nodes Edges Reconstruction methods

Metabolic network Metabolites,

enzymes,

or reactions

An edge can be a reaction that consumes

one metabolite to produce another; a linkage

between enzymes participating in consecutive

reactions; or, a metabolite produced by one

reaction and consumed by another reaction.

Computational prediction and

curation of experimentally

determined enzymes and

reactions [62,73].

Protein–protein interaction

network

Proteins Edges between two proteins indicate the pair

can engage in a physical interaction.

Experimental detection of

physical contact between

proteins [17��,63].

Genetic interaction network Genes Edges are drawn between two genes if they

have non-additive phenotypes.

Experimental detection of

non-additive phenotypic

effects of mutations in two

genes [6,64].

Co-expression network Genes An edge between two genes represents

similarity in their expression patterns, usually

across spatiotemporal contexts.

Statistical detection of

correlation of gene expression

across multiple conditions

[52,65–69].

Co-function network Genes An edge represents the probability that two

genes function in the same pathway.

Statistical assessment of two

genes participating in the same

pathway [26��,70�].

Regulatory network Genes Edges depict the case where one gene

directly regulates a second gene.

Experimental detection of

transcription factor-DNA

binding [71].
by neo-functionalization or subfunctionalization due to

edge gains and losses, are hard to isolate without proper

reference networks, though strategies for confronting this

challenge are emerging [23].

In summary, gene duplication combined with linkage

rewiring provides a fundamental engine for the growth

and diversification of network nodes and edges, though

we do not yet know what drives this engine and how the

engine works. The next section addresses the question of

how evolution can affect the shape of molecular networks.

Evolution of network structure
Networks have characteristic features in their shape (also

referred to as topology) [24]. Within molecular networks,

a few nodes, called hubs, have many connections to other

nodes, while most nodes have only a few connections in a

distribution sometimes referred to as ‘scale-free’ [25].

Also, nodes are found in clustered subsets of highly

interconnected members, and are believed to act together

as functional modules. Finally, networks typically contain

recurring motifs of linkage patterns, representing modes

of regulation. Why are these features prevalent in mol-

ecular networks and how does evolution shape network

topology? Here we examine how evolution shapes con-

nectivity of nodes and cohesiveness of functional

modules.

Network connectivity and evolutionary rate

Is the evolutionary rate of a gene or protein affected by its

physical and functional interactions within a network? For

example, in a genomewide co-function network of Ara-

bidopsis [26��], highly connected proteins (hubs) evolve
www.sciencedirect.com 
more slowly than proteins with less connectivity

(Figure 2). A similar effect was observed in the yeast

metabolic network, as well as the yeast protein–protein

interaction network [27,28�], although the latter obser-

vation has been contested owing to confounding factors,

such as gene expression level [29,30]. Unlike in yeast,

however, the inverse correlation between gene evolution-

ary rate and network connectivity in the Arabidopsis co-

function network (Figure 2) still exists even after con-

trolling for expression level (�0.18 vs. �0.13, Pearson vs.

partial correlation, fixing for expression level, unpub-

lished results).

One explanation for the relationship between high con-

nectivity and slow evolutionary rates is that hub mol-

ecules are indispensable in networks. Hence, most

mutations in their sequences are not favored by natural

selection. This ‘centrality-lethality’ idea was originally

proposed to explain the slow evolutionary rates of hubs in

protein–protein interaction networks [31�,32]. But the

centrality-lethality relationship is not observable in other

types of molecular networks, as highly connected

enzymes in metabolic networks—though perhaps evol-

ving more slowly—are no more essential than less con-

nected enzymes [28�,33]. Also, central transcription

factors in a yeast gene regulatory network actually have

a higher rate of evolution than less connected transcrip-

tion factors [34]. Furthermore, correlations between a

node’s connectivity and its duplicability (probability of

being retained from gene duplication, which is another

form of evolutionary constraint) vary according to the type

of biological network and organism, including the Arabi-

dopsis metabolic network [28�,35–37].
Current Opinion in Plant Biology 2012, 15:177–184
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Figure 2
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Highly connected genes (hubs) evolve more slowly than those with less

connectivity (intermediate and non-hubs) in Arabidopsis. We used 8789

genes in the genome-wide co-function network, AraNet [26��], with

evolutionary rates represented as a ratio between nonsynonymous

substitution and synonymous substitution (Ka/Ks). The evolutionary

rates were estimated from comparisons of Arabidopsis thaliana and

Arabidopsis lyrata [38]. The higher Ka/Ks indicates a faster evolutionary

rate. Evolutionary rate inversely correlates with connectivity in AraNet

(Pearson’s correlation coefficient = �0.18), even after having been

controlled by fixing expression level (partial correlation

coefficient = �0.13). For visual clarity of correlation analysis, we divided

these genes into three classes by degree of network connectivity: hub

(>200 links), intermediate (between 20 and 200 links), non-hub (<20

links). Distributions of Ka/Ks for each class of genes (1541 hubs, 4043

intermediates, and 3205 non-hubs) were summarized as box-and-

whisker plots, showing 90%, 75%, 50%, 25%, and 10% quantiles from

the top whisker. Differences among the three classes are statistically

significant: non-hub vs. intermediate ( p-value = 0), intermediate vs. hub

( p-value = 1.38 � 10�256), and non-hub vs. hub ( p-value = 0) by

Wilcoxon rank sum test.
The differences seen in these associations suggest that

while the topology of a network may affect evolutionary

rates among its components, its effect needs to be eval-

uated relative to other aspects of gene and protein func-

tion. For example, gene evolution rates in yeast appear to

be more strongly tied to gene expression levels than to

network connectivity [30]. In Arabidopsis, gene evol-

utionary rates also correlate with gene expression levels
Current Opinion in Plant Biology 2012, 15:177–184 
and the type of duplication event that generated the gene,

when compared to factors such as gene structure, chro-

mosomal positioning, local recombination rates, and gene

multi-functionality [38]. Whether and how these evol-

utionary rates vary within plant networks according to

topological features is an open question.

Functional modules as a basic unit of network evolution

Subsets of highly interconnected nodes within biological

networks are often implicated to be functional modules

[39��,40]. Do selective constraints affect modules, con-

serving them across evolutionary time scales? About half

of the functional modules in molecular networks appear

to be comprised of genes whose phylogenetic distri-

butions are more similar than expected by chance

[41�]. ‘Evolutionary cohesiveness’ measures the tendency

of members of a module to experience the same evol-

utionary event such as a gain or loss. In prokaryotes and

eukaryotes (including Arabidopsis), approximately 40%

and 46% of identified modules, respectively, display

evolutionary cohesiveness [42,43].

These findings show that a subset of functional modules

have been conserved to some degree during evolution.

However, the results also reveal that a large proportion of

functional modules can vary in their molecular compo-

sition across species. Consequently, it is logical to ask

whether selective forces drive the variation seen in func-

tional modules. For instance, plant proteins interacting

with pathogen proteins evolve faster than those interact-

ing with other plant proteins, probably owing to an arms-

race between pathogen and host proteins [44��]. It would

be interesting to see whether pathogen-resistance-based

functional modules display greater evolutionary change

than other modules.

Finally, despite the different evolutionary paths that

networks can take to derive their composition of nodes,

edges, and functional modules, their phenotypic output

can be remarkably consistent. For example, evolution

simulations involving the yeast metabolic network

demonstrated similar metabolic capacities for the final

network despite being confronted with different selec-

tive pressures [45]. Furthermore, the consistent pheno-

type of a network can be achieved with a large variety of

possible genotypes and across a number of different

evolutionary scenarios [46,47]. Therefore, understand-

ing the logic and pattern of evolutionary trajectories of

molecular networks will be crucial in predicting pheno-

type from genotype.

In summary, network properties of a protein may affect

how it evolves, and reciprocally, the functions of proteins

and modules can affect how a network structure evolves.

The findings presented here represent just the tip of the

iceberg of new knowledge that will be uncovered in this

field, provided we overcome some current limitations.
www.sciencedirect.com
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Figure 3
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Arabidopsis genes with characterized mutant phenotypes are more

connected in a genome-wide co-function network (AraNet). Among

19,647 genes in AraNet [26��], 2888 genes (�14.7%) are annotated with

Gene Ontology biological process terms with support from mutant

phenotype characterization (evidence code IMP: Inferred from Mutant

Phenotype) [72]. Hub genes (as defined in Figure 2) are enriched in IMP

annotation (17.4%, 574 out of 3281, p-value = 6.62 � 10�7, binomial

distribution), whereas non-hubs are depleted in IMP annotation (11.5%,

887 out of 7699, p-value = 1.80 � 10�16, binomial distribution). Dashed

line shows the background portion of all IMP-annotated genes in AraNet

(2888/19,647 = 14.7%).
Limitations and challenges
Despite the progress in developing an evolutionary un-

derstanding of molecular networks, we face many chal-

lenges. First, we still have limited network views of

plants. The largest interactome for the reference plant

Arabidopsis [17��] covers only 10% of the genome, and

the largest inferred co-function network [26��] only 75%

of the genome. We do not have a large-scale map of

genetic interactions for any plant [48�,49�]. The lack of a

genetic interaction map for plants is a seemingly intract-

able problem, but perhaps molecular networks could

guide the selection of gene pairs to test for interaction.

For example, most of the genes whose functions were

discovered through traditional forward or reverse genetics

appear to be highly connected in a genome-wide co-

function network of Arabidopsis (Figure 3). Pairwise

combinations of a hub gene and each of its immediate

neighbors may be good candidates for testing for non-

additive genetic interactions. If a hub gene with an

identifiable phenotype exists, ‘hub gene-neighbor gene’

double mutants may show an enhanced or suppressed

phenotype.

Second, proteins function in a context-specific manner

(e.g. cell type, tissue type, developmental stage, environ-

ment), and highly plastic transcriptomes in different cell

types suggest variation in biological networks across

different cell types [50,51]. But, most experimentally

mapped interactions for plants do not account for context

specificity. While efforts have begun to account for time

and place in reconstructing plant molecular networks [52–
54], questions about how evolution shapes context speci-

ficity remain to be answered.

Third, different types of biological data need to be

integrated for holistic analysis and interpretation of net-

works. The improved power for gene discovery by com-

bining molecular networks and quantitative trait locus

mapping [55] or genome-wide association studies

[56�,57�] in plants foreshadows accelerated progress for

investigating the evolution of complex traits in plants.

Finally, we need to build genome-wide networks for

more plant species to understand how network com-

ponents and their organization evolved in the plant lin-

eage. For example, genome-wide duplications are

rampant in plants [58] and investigating the effects of

these large-scale reorganizations of the genome will shed

light on our understanding of both micro- and macro-

evolutionary processes.

Open questions
Network theory allows us to model the molecular under-

pinnings of complex biological systems, and evolutionary

studies of these systems help us understand their proper-

ties, including their organization, dynamics, and robust-

ness. The ultimate goal is to understand how these
www.sciencedirect.com 
systems function to produce phenotypes. With that in

mind, we conclude with the following open questions as

possible avenues towards meeting this goal:

� Can we complete the reconstruction of plant molecular

networks? How do we define and assess completeness?

� How do we integrate networks of different types and

levels of organization ranging from metabolites, genes,

transcripts, proteins, reactions, pathways, functional

modules, regulatory motifs, subcellular compartments,

cells, tissues, organs, organ systems, organisms, and

ecosystems?

� Most functional modules are made up of more than two

genes. Therefore, binary genetic interaction studies

will not uncover the function of most of these modules.

How can we systematically elucidate the functions of

these multi-genic modules?
Current Opinion in Plant Biology 2012, 15:177–184
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� Can traits or biological processes be represented as

networks and if so how can we build such networks?

How will these trait networks relate to molecular

networks?

� Which plant traits are ‘keystone’ traits in the network

that serve as the tipping points of adaptive landscapes?

Which traits are versatile or exploratory [e.g. [59]]?

� How can we model agronomically important traits, such

as domestication, heterosis, and yield, using network

analysis?

� What is the best language and representation of

dynamic networks (e.g. Systems Biology Markup

Language [60])?

� How predictable or repeatable are evolutionary

trajectories of networks in plants [e.g. [61]]?
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