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Effects of Functional Bias on Supervised Learning
of a Gene Network Model

Insuk Lee and Edward M. Marcotte

Abstract

Gene networks have proven to be an effective approach for modeling cellular systems, capable of capturing
some of the extreme complexity of cells in a formal theoretical framework. Not surprisingly, this complex-
ity, combined with our still-limited amount of experimental data measuring the genes and their interac-
tions, makes the reconstruction of gene networks difficult. One powerful strategy has been to analyze
functional genomics data using supervised learning of network relationships based upon reference exam-
ples from our current knowledge. However, this reliance on the set of reference examples for the supervised
learning can introduce major pitfalls, with misleading reference sets resulting in suboptimal learning. There
are three requirements for an effective reference set: comprehensiveness, reliability, and freedom from bias.
Perhaps not too surprisingly, our current knowledge about gene function is highly biased toward several
specific biological functions, such as protein synthesis. This functional bias in the reference set, especially
combined with the corresponding functional bias in data sets, induces biased learning that can, in turn, lead
to false positive biological discoveries, as we show here for the yeast Saccharomyces cerevisiae. This suggests
that careful use of current knowledge and genomics data is required for successful gene network modeling
using the supervised learning approach. We provide guidance for better use of these data in learning gene
networks.

Key words: Gene network model, supervised learning, classification, functional coupling, functional
bias, reference set, genomics data.

1. Introduction

A major goal for our system-level understanding of a cell or an
organism is the identification of the functions of all genes/proteins
and their organization into pathways. With the classical one-gene-
one-study approach, this goal is certainly daunting, if not
impossible. However, the massive generation of biological data by
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high-throughput techniques developed over the past decade brings
this ambitious goal much closer, and abundant functional genomics
data provide opportunities for modeling global gene/protein net-
works, which may shed light on our understanding of cellular systems.

Supervised machine-learning approaches have recently become
popular in global gene/protein network modeling for various
organisms (1–5). Supervised learning is generally considered a ‘‘clas-
sification’’ task, in which we start with classes predefined by some
criterion (usually given by expert opinion) and attempt to find
additional cases of these from the data. For modeling gene net-
works, the typical approach is not the prediction of genes with a
completely defined set of cellular functions – this strategy is difficult,
not least, because the total set of gene functions is unknown and
because many gene functions overlap. Instead, networks are often
derived by examining two classes of gene pairs, functionally coupled
or not. Note that the network models are intrinsically consistent
with genes’ pleiotropic (multi-functional) natures. Connections
(perhaps weighted) within such networks capture functional rela-
tionships among genes and can therefore be used to discover func-
tions of uncharacterized genes, to define functional modules of
genes, and to describe the organization of genes that contribute
to the physiological state of the cell.

Learning by classification requires reference examples on which
to train, and in this case they would be known, functionally coupled
gene pairs. A set of reference examples is generally based on current
knowledge and expert opinion. Reliable examples of gene functional
coupling can be derived easily from various biological annotation sets
based mostly on manual curation by expert biologists (Table 20.1).
In order to allow effective supervised learning, a reference set must

Table 20.1
Annotation databases for gene functions

GO (gene ontology) biological process
http://www.geneontology.org/ontology/process.ontology
GO is hierarchically organized, with the top-level (level 0) annotation being most general and the

bottom level the most specific. Generally, the middle range of annotation provides a good
compromise between specificity and comprehensiveness.

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
ftp://ftp.genome.jp/pub/kegg/pathways/sce/sce_gene_map.tab
KEGG offers a three-level hierarchical annotation of biological pathways. The bottom-level terms are

most useful as functional reference terms, but show a bias toward metabolic pathways.

CYGD (the comprehensive yeast genome database) functional category, hosted by MIPS
ftp://ftpmips.gsf.de/yeast/catalogues/funcat/
CYGD is a reasonably comprehensive and detailed annotation set that is specific for yeast. The top level

contains 11 broad functional categories that are useful for visualization and analysis of general
functional trends.
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clearly be both comprehensive and reliable. However, reference sets
for functional networks have another important requirement, which
is freedom from functional bias. In fact, current biological annota-
tions often display severe bias toward a few specific functions. In this
chapter, we demonstrate how this reference set bias affects the inves-
tigation of functional linkages from diverse genomics data, and we
present examples for the genes of the yeast S. cerevisiae.

2. Methods

2.1. Functional Bias in

Current Functional

Annotations

A number of different databases organize genes according to their
pathways, such as the three listed in Table 20.1. Among these,
gene ontology (GO) annotation has become popular for func-
tional genomics studies due to its hierarchical organization and
its separation of three aspects of gene function—biological pro-
cess, which captures pathway relationships; cellular component,
which describes sub-cellular localization of gene products; and
molecular function, which focuses more on enzymatic and binding
functionalities (6). GO has also consistently improved through
community efforts (7). For example, by March 2005, 4,199
yeast genes (�72% of the total of 5,794 verified protein encoding
genes) were annotated by at least one GO biological process
annotation. Therefore, a functional annotation reference set
based on GO biological processes is highly comprehensive, satisfy-
ing the first requirement for effective supervised learning.

Another requirement for an effective reference set is reliability.
We can control the reliability of GO-derived reference sets both at
the level of their generality and with regard to the evidence support-
ing them. First, we can control the generality of employed—general
annotations such as metabolism (GO:0008152) are typically located
near the top of the GO hierarchy and often provide poor resolution
in the learning of specific cellular functions. By contrast, annotations
near the bottom of the GO hierarchy are highly specific but annotate
only one or a few genes, and thus they lack comprehensiveness. The
middle layers of the gene ontology hierarchy generally provide a
more optimal trade-off between comprehensiveness and reliability
(see Note 1). GO also provides evidence codes (Table 20.2) as
another way of controlling the reliability of the reference set. Anno-
tations by traceable author statement (TAS), inferred from direct
assay (IDA), inferred from mutant phenotype (IMP), inferred from
genetic interaction (IGI), and inferred from physical interaction
(IPI) are generally considered as highly reliable annotations. As of
March, 2005, the GO biological process had 4,199 annotated yeast
genes with a total 11,430 terms, of which 9,093 (�80%) are based
on one of these five types of highly reliable evidence.
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The reference set obtained by considering the above GO annota-
tions, though highly reliable and comprehensive, may still have a sys-
tematic bias toward a few specific functions. This in turn may lead to
biased learning of the given genomics data. We examined the distribu-
tion of GO biological process terms from the middle layers of the
annotation hierarchy (between levels 6 and 10, see Note 1). Although
we expected similar genome coverage among functional terms, we
found a few dominant functional terms used to annotate yeast genes.
From 1,067 selected GO biological process terms, we observed that a
single functional term, protein biosynthesis (GO:0006412), accounts
for more than 4% of total gene annotations, although its expected
coverage is less than 0.1% (100 / 1,067< 0.1) (Fig. 20.1A, filled bars).

In order to evaluate functional coupling between genes, we
derived reference gene pairs that are functionally coupled (positives)
and pairs that are not functionally coupled (negatives) from the
given gene functional annotation set. The simplest way of deriving
a set of positive examples is to pair genes that share at least one
common functional description. A corresponding set of negative
examples can be derived by pairing genes that do not share any
functional description (see Note 2). As a result of this gene pairing,
the functional bias of gene annotation is dramatically amplified in
the reference sets of functionally coupled gene pairs (Fig. 20.1A,
empty bars). This functional bias annotation is not specific to a
particular annotation set. We observe a similar functional bias
toward the ribosome, the core machinery of protein biosynthesis,
in another commonly used gene function annotation set, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) (8), which focuses
mainly on metabolic pathway information (Fig. 20.1B).

Table 20.2
Gene ontology evidence codes and their reliability

Code Description Reliability

TAS Traceable Author Statement High

IDA Inferred from Direct Assay High

IMP Inferred from Mutant Phenotype High

IGI Inferred from Genetic Interaction High

IPI Inferred from Physical Interaction High

ISS Inferred from Sequence or Structural Similarity Low

IEP Inferred from Expression Pattern Low

NAS Non-traceable Author Statement Low

IEA Inferred from Electronic Annotation Low
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Fig. 20.1. The distributions of functional terms among annotated genes (filled bars) and
gene pairs (empty bars) by (A) the gene ontology (GO) biological process annotations, and
(B) the Kyoto Encyclopedia of Genes and Genomes (KEGG). The pathways illustrate
functional bias in both major annotation databases. Only a few of the most dominant
terms out of the 1,067 GO biological process terms between levels 6 and 10 and out of
100 KEGG pathway terms at the bottom level are labeled. In both GO biological process
and KEGG, the most dominant functional term is related to protein biosynthesis (the
ribosome being the major component represented), and this single term accounts for 3
and 7% of total gene annotations by GO and KEGG, respectively. This functional bias in
gene annotations has become dramatically amplified by pairing genes for the same
functional terms to provide references of gene pairs functionally coupled. As references
of gene pairs, about 25% of total reference examples are based upon only a single most
dominant functional term in both annotation sets.
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There are two major systematic biases that introduce func-
tional biases into our current knowledge bases. First, there are
differences in the size of cellular functional modules. We will
refer to this as size bias. For example, the protein biosynthesis
functional module consists of a huge translational machine, the
ribosome (composed of 150 � 200 proteins in yeast), as well as
many other co-factors. Thus, this single specific functional module
annotates many more genes than any other. The second bias we
will refer to as a study bias. Biologists have historically studied
genes using a one-gene-one-study approach, which naturally
introduced a bias toward genes that are more important (and
often biologically more essential) or those more readily studied
(for example, genes with an obvious mutation phenotype are easier
to study). Genes involved in protein biosynthesis have been
subject to this study bias. The recent development of various
high-throughput functional genomics analyses with reverse-
genetics approaches solves the problem of study bias, but size
bias is an intrinsic characteristic of cellular systems.

2.2. Effect of Reference

Set Functional Bias on

Supervised Learning

The inevitable functional bias in gene annotations potentially
affects further discovery of gene functions and network organiza-
tion. To demonstrate the effect of a single dominant functional
term (protein biosynthesis, see Fig, 20.1A) of the reference set
based on the GO biological process in learning functional gene
coupling, we compare two different reference sets derived from the
GO biological process annotation set: (1) a biased reference set that
comprises all gene pairs sharing annotation, including the pairs
sharing the function ‘‘protein biosynthesis’’; and (2) an unbiased
reference set based on the same pairs but excluding those sharing
the protein biosynthesis term. The effects on learning for links are
illustrated in Fig. 20.2 with examples from various types of yeast
genome-wide functional genomics data.

We can infer which genes are functionally coupled by the co-
expression patterns across different experimental conditions. The
tendency toward co-expression can be measured by the Pearson
correlation coefficient between any two genes’ expression profile
vectors. For a set of gene pairs with a given range of co-expression
tendencies, we calculate the log-likelihood score (LLS) using Bayesian
statistics, as a measurement of the likelihood of functional coupling
supported by the given data (see Note 3). In Fig. 20.2, log-likelihood
scores are calculated with the 0.632 bootstrapping method (9) to
minimize the over-fitting of models (see Note 4). For the functionally
informative microarray data set, we observe a significant positive
correlation between the tendency toward co-expression and the mea-
sured likelihood of functional coupling between pairs of genes.

For microarray data from yeast cell cycle time courses, log-
likelihood scores are higher with the biased reference set than with
the unbiased one (Fig. 20.2A). For the most significant data range
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(the top 1,000 gene pairs), the log-likelihood score is about 4 (i.e.,
the likelihood is �55-fold higher than random) with the biased
reference set, while it is about 3 (i.e., the likelihood is �20-fold
higher than random) with the unbiased reference set. Thus, there
is an increase of approximately threefold overall, deriving entirely
from a single additional functional term. This observation
becomes extreme as we examine the microarray data collected
from heat-shock-treated cells (Fig. 20.2B). The positive correla-
tion between the co-expression of genes across heat-shock condi-
tions, and the likelihood of functional coupling, is very strong with
the biased reference set, especially when the Pearson correlation
coefficient is higher than 0.8. In the range of Pearson correlation
coefficients from 0.8 to 1, the LLS increases from �1 (i.e., the
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Fig. 20.2. Correlation between data-intrinsic scores that imply gene functional coupling (Pearson correlation coefficient
measuring co-expression tendency or probability score of protein–protein interaction) and log-likelihood score (see Note 3)
that measures the likelihood of gene functional coupling with the given supporting data. Three different data sets—
(A) microarray data with cell cycle time courses, (B) microarray data with various heat-shock conditions, and (C) protein–
protein interaction from affinity complex purification—are evaluated using two different reference sets derived from GO
biological process annotation: (1) the biased set (filled circle), including gene pairs among the most dominant term ‘‘protein
biosynthesis,’’ and (2) the unbiased set (empty circle), excluding reference gene pairs for the term ‘‘protein biosynthesis.’’
Each data point represents a bin of 1,000 gene pairs of the data set, which are sorted by data-intrinsic scores.
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likelihood is approximately threefold higher than random) to � 4.2
(likelihood �66-fold higher than random), achieving a �22-fold
increase in the likelihood of functional coupling for the most co-
expressed genes, apparently implying that this heat-shock microarray
data carries strong information about gene functional couplings.
However, masking the single dominant functional term, protein
biosynthesis, is sufficient to remove most of the trend, showing
only approximately threefold likelihood increase across the same
range of Pearson correlation coefficients (from LLS �1.7, 5.5-fold
higher likelihood than random, to LLS �2.7, 15-fold higher like-
lihood than random).

This over-optimism exhibited by the biased reference set lar-
gely disappears when we consider protein–protein interaction
data. We compared the biased and the unbiased reference sets in
evaluating a high-throughput protein–protein interaction data set
derived from affinity purification of protein complexes followed by
mass spectrometry analysis (10). Using machine-learning algo-
rithms, the raw data set has been simplified to a set of 14,317
protein–protein physical interactions with associated probabilistic
scores (10). In this data set, the biased reference actually provides
very similar likelihood values to the unbiased reference
(Fig. 20.2C). A similar trend is evident in a high-quality data set
of 12,300 interactions derived from published protein physical
and genetic interaction data (and excluding large-scale assay-
derived interaction data) (11). This data set shows a very high
overall quality and relatively little difference in performance
between the unbiased reference set (LLS¼3.85) and the biased
reference set (LLS¼3.55).

2.3. Effect of Genomics

Data Set Functional

Bias on Supervised

Learning

What are the underlying characteristics of data sets sensitive to this
reference set bias? Not surprisingly, in many data sets these appear
to be functional biases that affect their performance in supervised
learning. This trend is evident when measuring the functional bias
as a function of interaction confidence score (the gene retrieval
rate). The gene retrieval rates measured for genes of 11 different
functional groups defined by the Munich Information Center for
Protein Sequences (MIPS) (12) demonstrates a high bias toward
genes involved in protein biosynthesis, which are among the most
highly co-expressed gene pairs in yeast cell-cycle microarray
experiments (Fig. 20.3A). This trend explains the overly optimis-
tic evaluation of cell-cycle micro-array data sets by the biased
reference set. It has been shown that proteins in stable complexes
tend strongly to co-express (13). Therefore, co-expression of
genes is an excellent feature for inferring interactions among pro-
teins of stable complexes such as the ribosome, and, not surpris-
ingly, the most strongly co-expressing genes are highly enriched
for ribosomal protein pairs. This trend is exacerbated through the
use of the biased reference set, which is over-represented for
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ribosomal gene pairs. Thus, the generality of interactions discov-
ered from these data may be suspect when the biased reference set
is used.

The distribution of gene functions in the yeast heat-shock
microarray data set is also interesting. While showing a similar
enrichment of protein biosynthesis genes, this set also shows a
flat gene retrieval rate (Fig. 20.3B)—i.e., the gene retrieval rate
does not significantly increase with an increasing number of co-
expressed gene pairs. This implies that co-expression during yeast
heat shock is restricted to only a small percentage of cellular
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Fig. 20.3. Gene retrieval rate across 11 MIPS functional categories for the top 10,000 scored functional gene pairs in (A)
co-expression during cell cycle time courses, (B) co-expression across various heat-shock conditions, and (C) protein–
protein interactions from affinity complex purifications. The cumulative gene functional coverage for the given data set
was measured based on MIPS’ 11 top-level protein functional categories for every 1,000 gene pairs sorted by data-
intrinsic scores.
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systems. In this case, additional functional couplings are added to
this small set of systems (which include the ribosome and other
protein biosynthesis-related systems) without incorporating addi-
tional genes, leading to an increasingly dense network of func-
tional linkages among this subset of genes. This is evident in the
fact that functional couplings derived from co-expression on the
heat-shock data cover only 9% of the yeast proteome and have a
clustering coefficient (14) of 0.6 for the top 10,000 gene pairs,
implying highly clustered interactions in a relatively few functional
modules. By contrast, the same number of gene pairs derived from
the cell-cycle data set covers about 36% of the proteome and has a
lower clustering coefficient (0.28). The protein–protein interac-
tion data sets show less functional bias (Fig. 20.3C), with large
proteome coverage (58%) and a low clustering coefficient (0.14)
for the number of gene pairs, implying that the information in
these sets is distributed through many functional modules in the
yeast cell.

2.4. Circumventing

Functional Bias in

Reference and Data

Sets

How can we achieve reliable evaluation in the presence of persis-
tent functional bias in the reference and data sets? Approaches for
monitoring over-training, such as cross-validation and bootstrap-
ping, do not solve this problem, as seen in the results of Fig. 20.2,
which were carried out with 0.632 bootstrapping (see Note 4).
One simple approach is to ignore the dominant terms for the
purposes of training and testing. For an unbiased data set, this
masking of a dominant functional term has minimal effects, as we
show with the example of protein–protein interaction data
(Fig. 20.2C and 3C). However, for biased data sets
(Fig. 20.2A, B and 20.3A, B), we observe much lower likelihoods
of functional coupling, implying that the optimistic likelihood
scores were unrealistic and therefore risky to generalize to the
rest of the data. Combined with cross-validation or bootstrapping,
this dominant term masking is a simple but effective way to remove
much of the negative effects of functional bias toward a few domi-
nant functional annotations.

3. Notes

1. Hierarchy in gene ontology. The gene ontology is hierarchically
organized, and references derived from different levels of the
annotation hierarchy may result in quite different evaluations
for identical data sets. This hierarchy is diamond-shaped, char-
acterized by fewer descriptive terms at the top and bottom
levels and by a gradual increase in terms as one moves toward
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the middle layer of the annotation hierarchy. Generally speak-
ing, top-level annotations provide extensive coverage but low
information specificity (resolution), while low-level annota-
tions describe fewer genes but with high specificity. Therefore,
the trade-off between annotation coverage and specificity must
be considered carefully in order to obtain an effective reference
set for evaluating genomics data. Empirically, we find good
performance using GO biological process terms between level
6 and 10 out of the total of 15 levels. The term ‘‘biological
process’’ is considered to be level 0.

2. Imbalance between positive and negative examples in a refer-
ence set of gene functional couplings. Generating positive
(negative) reference examples of functionally coupled gene
pairs by pairing genes sharing (not sharing) any functional
annotation results in a serious imbalance in the sizes of the
two reference sets. We obtain a much larger negative refer-
ence set than positive (e.g., �100-fold larger negative
reference set than positive based on the yeast GO biological
process annotation of March 2005). This much higher fre-
quency of negative examples in a reference set is problematic if
one uses conventional data evaluation methods, which use a
‘‘true positive rate’’ (true positive / predicted as positive) such
as a recall-precision curve (generally an overly pessimistic
evaluation indicated by low precision for a given recall) or
receiver operating characteristic (ROC) curve (generally an
overly optimistic evaluation indicated by a high true positive
rate for a given false positive rate) (15). With the severe size
imbalance between the positive and negative reference sets,
the measurement of the true positive rate is often discoura-
ging in absolute terms; however, as a relative measure among
different data sets, it works well. Gene functional couplings
can be learned using these relative reliability scores, and var-
ious thresholds of scores will generate gene network models
with varying accuracies and differing coverage.

3. Evaluation of gene functional coupling by log likelihood scores.
We can evaluate the reliability of gene functional couplings
supported by the given data using Bayesian statistics. A formal
representation of Bayesian inference of the functional cou-
pling between genes is the log likelihood score (LLS),

LLS ¼ ln
PðI jDÞ=Pð� I jDÞ

PðI Þ=Pð� I Þ

� �
;

where P (I|D) and P (�I|D) are the frequencies of gene func-
tional coupling and its negation observed in the given geno-
mics dataset (D), as measured by reference gene pairs. P (I)
and P (�I) represent the prior expectations (the total frequen-
cies of all positive and negative reference gene pairs,
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respectively). A score of zero indicates coupled gene pairs in
the data being tested are no more likely to be functionally
coupled than random; higher scores indicate a more informa-
tive data set for identifying functional relationships.

4. Evaluation with 0.632 bootstrapping. To avoid over-fitting,
we employed 0.632 bootstrapping (9) for all LLS evaluations.
The 0.632 bootstrapping has been shown to provide a robust
estimate of functional coupling accuracy. It is especially
favored over cross-validation for very small datasets (9).
Data evaluation with bootstrapping is therefore appropriate
even for more poorly annotated genomes. Unlike cross-vali-
dation, which uses multiple tests and training sets by sampling
data without replacement, 0.632 bootstrapping constructs
the training set from data sampled with replacement and the
test set from the non-sampled data. For the sampling, each
instance has a probability of 1–1/n of not being sampled,
resulting in �63.2% of the data being in the training set and
�36.8% in the test set (16). The overall LLS is the weighted
average of results for the two sets with 10 repetitions, equal to
0.632*LLStest + (1–0.632)*LLS train.
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