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Network-guided genetic screen (NGGS) has been suggested to

be more effective than traditional forward or reverse genetics

screen. Although the predictability of NGGS with given networks

has been measured in previous studies, its general effectiveness,

particularly for genome-wide reverse genetic screens, has not

been assessed yet. We estimated the general effectiveness of

NGGS by simulating iterative searching over networks for

known phenotypic genes in two model organisms, baker’s yeast

(S. cerevisiae) and worm (C. elegans). We found that NGGS is

more effective in C. elegans, implicating a higher value for

NGGS in animals including humans.

Genetic dissection of traits with medical or agronomic impor-

tance is one of the ultimate goals in genetics research. It is

however not a trivial task because of the complex genetic

organization of organisms. During recent decades, geneticists

have exploited two complimentary approaches for genetic

analysis of phenotypes: forward and reverse genetic screens.

A forward genetic screen is a phenotype-driven approach, in

which we typically design a screening system detecting mutants

displaying a phenotype of interest. Subsequent genotyping

leads to the discovery of novel genes responsible for the

phenotype. However, this ‘blindfolded’ approach suffers from

its bias towards strong genetic factors—strong enough to be

detected by a given screen method—and genes located on a

more sensitive region of the chromosome to the given random

mutagenesis method (for example, transposable element mutagens

usually show uneven distribution of insertions along the

chromosome). Another type of forward genetics is the recently

advanced genome-wide association study (for a review, see

ref. 1) that shows huge potential in discovery of candidate

genes associated with phenotypes of humans and plants. Yet,

suggesting only a handful candidate genes with signifi-

cant statistical power, this new genetics technology does

not seem sensitive enough to detect weak genetic factors.2

On the contrary, an alternative systematic gene-driven reverse

genetics approach can potentially circumvent the problem of

false negatives by permitting testing of each gene, thereby

detecting genes causing even subtle phenotypic effect. In virtue

of available genome-wide knock-out mutant libraries (e.g., for

yeast and Arabidopsis) or gene silencing methods (e.g., RNA

interference systems for worm, fly, and mammalian cells),

unbiased genome-wide reverse genetic screens are possible.

The genome-wide reverse genetic screen, however, is not a

pragmatic approach in general, because testing all genes in the

genome incurs a high cost as well as frequently missing many

genes truly involved in the phenotype due to the high through-

put nature of the screens.

Recently a novel strategy for genetic screening with the aid

of predictive gene network models has been proposed—

network-guided genetic screen (NGGS).3,4 In NGGS, we

prioritize candidate genes for experimental tests by strength

of connection to the known phenotypic genes in a gene

network—generally called guilt-by-association approach. Many

phenotypes are genetically organized as pathways or func-

tional modules that are composed of functionally coupled

genes, often forming clusters of highly connected genes in

functional gene networks. Therefore, known phenotypic genes

tend to connect to novel genes for the same phenotypes in the

network. The predictability of a particular phenotype by a

network can be measured by cross-validation of the known

phenotypic genes with formal Receiver Operating Character-

istics (ROC) curve analysis.4 In this analysis predictability is

measured by the area under the ROC curve (AUC) scores

spanning from 0.5 indicating predictability by random expec-

tation to 1.0 for a perfect predictor. If a phenotype is

predictable by a given network, discovery of novel genes for

the same phenotype could be effectively conducted by guilt-by-

association. The feasibility of this cost-effective genetic screen

has been experimentally validated for phenotypes in various

model organisms.5–7

Despite those successes of NGGS, its general effectiveness

over unbiased genome-wide reverse genetic screens has not

been assessed systematically. For example, we achieved 15-fold

effectiveness for discovery of ribosomal biogenesis genes of

baker’s yeast,7 and 10-fold effectiveness for discovery of

suppressors of tumorigenesis pathway mutations in C. elegans

(worm).6 We do not know, however, how generally effective

the NGGS would be for genome-wide reverse genetic screen

projects in yeast and worm. In this study, we measured general

cost effectiveness of NGGS over unbiased genome-wide

reverse genetic screen for loss-of-function phenotypes of yeast

and worm by simulation of iterative process of prediction-

and-test. The scheme of computational simulation of an

iterative screen based on guilt-by-association followed by a

test for known phenotypic genes is illustrated in Fig. 1. For the

simulation we used the same gene sets for 100 yeast knock-out

phenotypes as in ref. 4 and 43 worm RNA interference (RNAi)

phenotypes as in ref. 6. In the simulation we start the screen

for genes of each phenotype with a random selection of a

candidate. If the random candidate is not a known phenotypic

gene (false positive), we go for another random selection. Or if

the random candidate is a known phenotypic gene (true

positive), we select its network neighbors as the next candi-

dates to test. Subsequently for the candidates that turn out to

be true positives, we continue to collect their neighbors as the

next novel candidates. On the contrary, for the candidates that
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turn out to be false positives, we stop propagation of candi-

dates over the network. In case we do not find any phenotypic

genes among the candidates, we go back to the initial condi-

tion of random selection for next candidates. If phenotypic

genes are connected as pathways in a gene network, this

rationale of progressive search will effectively extend a view

of pathways responsible for the phenotypes (Fig. 1).

Assuming a higher probability of true phenotypic genes for

candidates by guilt-by-association, we expect a reduced

number of genes to be tested in total to retrieve all known

phenotypic genes by NGGS. We formulate a new score to

measure effectiveness (E) of NGGS over unbiased genome-

wide reverse genetic screens as follows.

E ¼ log2
R

N
;

where R= the number of tested genes to retrieve 50% of total

known phenotypic genes by random selection,N= the number

of tested genes to retrieve 50% of total known phenotypic

genes by NGGS. Therefore, ineffective NGGS would be

indicated by E equal to zero, while effective NGGS by positive

E value (for example, E = 1 if NGGS requires half as many

tested genes for unbiased random selection to retrieve 50% of

total known phenotypic genes). Here, we choose 50% retrieval

rate for optimal measurement of effectiveness to avoid any

lagging effect as approaching saturating point of retrieval.

Using the above scoring scheme, we evaluated the general

effectiveness of NGGS in genome-wide reverse genetic screens

for loss-of-function phenotypes for which predictability has

been previously measured. For a more robust evaluation, we

analyzed only phenotypes with not less than 30 associated

genes for both yeast and worm (thus, we analyzed 53 knock-

out phenotypes of yeast and 28 RNAi phenotypes of worm).

As gene network models for NGGS, we used previously

reported probabilistic functional networks of yeast genes,

YeastNet,8 and of worm genes, WormNet.6 The original

networks were modified by excluding links supported by

co-citation or genetic interaction data that could be directly

related to our test data, loss-of-function phenotypic genes.

Therefore, we conducted the entire analyses with a highly

conservative setting. We found strong correlation between

predictability of phenotypic genes (measure by AUC) and

effectiveness of NGGS over an unbiased genome-wide reverse

genetic screen for the phenotypic genes (measured by E) in

both yeast and worm (Fig. 2). With a regression model

(quadratic fit) between predictability and effectiveness, AUC

of 0.7 and 0.85 correspond to 2-fold and 5-fold effectiveness,

respectively, in yeast. We observed better correlation with

worm in which AUC of 0.67, 0.8, and 0.88 correspond to

2-fold, 5-fold, and 10-fold effectiveness, respectively. For

yeast, only 28% (15/53) tested knock-out phenotypes are

expected to be 2-fold or more effective by NGGS (Fig. 2a).

For worm, however, 68% (19/28) tested RNAi phenotypes are

expected to be 2-fold or more effective by NGGS (Fig. 2b).

This suggests a generally higher effectiveness of NGGS with a

higher eukaryote such as worm that has a larger genome, that

is, a larger search space. Maximum effectiveness by maximum

predictability (AUC = 1) is about 15-fold for yeast and about

30-fold for worm with the given regression models. These are

fairly consistent with the range of effectiveness previously

reported from experimental validation in yeast7 and worm.6

A protein–protein interaction network (PPIN) is a major

type of pathway model in systems biology. While PPINs

depict pathways by physical interactions between proteins,

functional gene networks used in this analysis do so by

functional association between genes. A physical interaction

between proteins is strong evidence of functional association

between genes encoding those proteins. Yet, there are many

gene functional associations that are not based on physical

protein interactions. Moreover, available techniques to detect

physical protein interactions suffer from limited sensitivity and

high false positive rates, particularly with multicellular organisms

such as animals and plants. We compared the effectiveness of

NGGS by PPINs and by functional gene networks in yeast

and worm. We constructed a PPIN of yeast by consolidating

various protein–protein interaction (PPI) data sets: PPI

databases such as Database of Interacting Proteins (DIP)9

(used only small scale experiment set), Munich Information

Center for Protein Sequence (MIPS),10 BioGRID,11 confident

sets of genome-wide high-throughput yeast two hybrid

Fig. 1 A schematic figure describing the iterative steps of prediction-

and-test to search for true phenotypic genes in the genome via network

connections. Numbers inside nodes represent the sequence number of

iteration. For example, we choose a #1 node and find it as a true

positive (black node). Then we use this node to predict next candidates

(all five #2 nodes) by connections to the #1 node. Among five only

three turn out to be true positives. We continue to predict the next

candidates by network neighbors connected to these true positives, whereas

network-guided prediction stops at false positive nodes (white nodes).

Fig. 2 Regression models between predictability (AUC) and effec-

tiveness (E) of loss-of-function phenotypes measure by (a) YeastNet in

yeast and by (b) WormNet in worm.
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screens,12,13 and PPIs derived using the spoke model14 of

affinity purification of protein complex followed by mass

spectrometry analysis data.15,16 This PPIN of yeast comprises

5275 genes and 65 033 links. In contrast to yeast, worm has

much fewer PPI data. We employed the largest worm PPIN,

Worm Interactome version 8 or WI8, based on high through-

put yeast two hybrid screens and literature curation.17 This

largest published worm interactome maps only 4391 links

between 2812 genes (B14% of genome). The measured effec-

tiveness of NGGS for knock-out phenotypes by PPIN or by

functional gene network (YeastNet) shows similar distribution

in yeast (p-value 4 0.99 by Wilcoxon signed rank test)

(Fig. 3a). This suggests that the current status of yeast PPIN

recapitulates the majority of pathways. On the contrary, with

the higher eukaryote worm, the functional gene network

(WormNet) is much more effective than the worm PPIN,

WI8. As expected from its limited genome coverage, WI8

shows effectiveness of NGGS for RNAi phenotypes that is

similar to that of a random model (Fig. 3b). These results

suggest that NGGS would be much more powerful with a

functional gene network in higher eukaryotes in which PPI

data are insufficient for high coverage pathway reconstruction.

What are the characteristics of the loss-of-function pheno-

types with high effectiveness of NGGS? In principle, NGGS

uses network connectivity among genes associated with same

phenotypes. Thus, degree of connectivity of phenotypic genes

to the entire network is presumably an important factor

promoting effectiveness of NGGS. To address this question,

we measured mean degree connectivity of the member genes of

each tested loss-of-function phenotype with edge weight of the

networks (Fig. 4). We observed a strong tendency for higher

effectiveness of NGGS with higher mean degree connectivity

of member genes for each phenotype in both yeast and worm.

Some yeast phenotypes show high effectiveness even with low

degree connectivity (Fig. 4a). This suggests that these pheno-

typic genes are connected to each other with higher specificity

than other phenotypes.

In summary, we assessed the general effectiveness of NGGS

over unbiased genome-wide reverse genetic screens by compu-

tational simulation in yeast and worm. Predictability strongly

correlates with effectiveness of NGGS. For at least 2-fold

effectiveness, we need to obtain predictability score, AUC of

0.7 and 0.67 for yeast and worm, respectively. We also

estimated maximally achievable effectiveness of 15-fold and

30-fold for yeast and worm, respectively, with currently

available gene functional networks. It is noticeable that

NGGS is more effective in a larger genome, implicating a

higher value for NGGS in animals including human. Further,

NGGS can be more effective with functional gene networks

than PPINs, especially for organisms with insufficient

protein–protein interaction data such as C. elegans.
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