
TECHNOLOGY REPORT
published: 10 February 2012
doi: 10.3389/fpls.2012.00015

Metabolomics as a hypothesis-generating functional
genomics tool for the annotation of Arabidopsis thaliana
genes of “unknown function”
Stephanie M. Quanbeck 1, Libuse Brachova1, Alexis A. Campbell 1, Xin Guan1, Ann Perera1, Kun He2, SeungY.

Rhee2, Preeti Bais3, Julie A. Dickerson3, Philip Dixon4, Gert Wohlgemuth5, Oliver Fiehn5, Lenore Barkan6, Iris

Lange6, B. Markus Lange6, Insuk Lee7, Diego Cortes8, Carolina Salazar 9, Joel Shuman10,Vladimir Shulaev 9,

David V. Huhman11, Lloyd W. Sumner 11, Mary R. Roth12, Ruth Welti 12, Hilal Ilarslan13, Eve S. Wurtele13 and

Basil J. Nikolau1*

1 Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
2 Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
3 Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA, USA
4 Department of Statistics, Iowa State University, Ames, IA, USA
5 Genome Center, University of California, Davis, CA, USA
6 M. J. Murdock Metabolomics Laboratory, Institute of Biological Chemistry,Washington State University, Pullman,WA, USA
7 Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
8 Anatomy and Neurobiology,Virginia Commonwealth University, Richmond, VA, USA
9 Department of Biological Sciences,University of North Texas, Denton, TX, USA
10 Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
11 Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, USA
12 Division of Biology, Kansas State University, Manhattan, KS, USA
13 Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA

Edited by:

Roger Deal, Emory University, USA

Reviewed by:

Kazuki Saito, Chiba University, Japan
Adrian Hegeman, University of
Minnesota, USA
Alisdair Fernie, Max Planck Institut for
Plant Physiology, Germany

*Correspondence:

Basil J. Nikolau, Iowa State
University, 3254 Molecular Biology
Building, Ames, IA 50011, USA.
e-mail: dimmas@iastate.edu

Metabolomics is the methodology that identifies and measures global pools of small
molecules (of less than about 1,000 Da) of a biological sample, which are collectively
called the metabolome. Metabolomics can therefore reveal the metabolic outcome of
a genetic or environmental perturbation of a metabolic regulatory network, and thus pro-
vide insights into the structure and regulation of that network. Because of the chemical
complexity of the metabolome and limitations associated with individual analytical plat-
forms for determining the metabolome, it is currently difficult to capture the complete
metabolome of an organism or tissue, which is in contrast to genomics and transcriptomics.
This paper describes the analysis of Arabidopsis metabolomics data sets acquired by a
consortium that includes five analytical laboratories, bioinformaticists, and biostatisticians,
which aims to develop and validate metabolomics as a hypothesis-generating functional
genomics tool. The consortium is determining the metabolomes of Arabidopsis T-DNA
mutant stocks, grown in standardized controlled environment optimized to minimize envi-
ronmental impacts on the metabolomes. Metabolomics data were generated with seven
analytical platforms, and the combined data is being provided to the research community to
formulate initial hypotheses about genes of unknown function (GUFs). A public database
(www.PlantMetabolomics.org) has been developed to provide the scientific community
with access to the data along with tools to allow for its interactive analysis. Exemplary
datasets are discussed to validate the approach, which illustrate how initial hypotheses
can be generated from the consortium-produced metabolomics data, integrated with prior
knowledge to provide a testable hypothesis concerning the functionality of GUFs.
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INTRODUCTION
The biochemical and physiological functions of a large proportion
of the 28,692 unique genes in the Arabidopsis genome are experi-
mentally undetermined (TAIR November 2010)1. These genes fall
into two categories: (1) genes whose function cannot be ascribed

1http://www.arabidopsis.org/portals/genAnnotation/genome_snapshot.jsp

based upon any sequence homology [i.e., genes that either share
no sequence homology to any gene in sequence databases, or share
homology to genes of unknown function (GUFs)] – approximately
9000 of the annotated genes fall in this category; and (2) genes
whose function can be classified, based on sequence homology,
in terms of broad functional categories (e.g., phosphatase, kinase,
etc.), but the exact biochemical and physiological function of the
encoded protein remains elusive – approximately 15,000 genes
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fall in this latter category. Since completion of the sequencing of
the Arabidopsis genome in 2000 (AGI, 2000), various governmen-
tal research-funding agencies have supported the development of
community resources and the application of different technologies
to identify biochemical and physiological functions of these GUFs.
These resources include the development of large mutant col-
lections, mutant phenotype data, global expression profiling of
RNA and protein gene products, protein–protein interaction data,
and identification of the location of gene products at the cellu-
lar/tissue and subcellular organelle levels (Somerville and Dangl,
2000; Shinozaki and Sakakibara, 2009; MASC, 2010). This manu-
script describes the out come of a multi-disciplinary experimental
system that has been developed within this context, to generate
and evaluate metabolomics data as a tool for deciphering gene
function in Arabidopsis.

Metabolomics is the large-scale profiling of the pool of small
organic molecules (molecular weight ≤1000), which are acted
upon and chemically interconverted by enzymes. Collectively
these small organic molecules that are substrates and products
of enzyme-catalyzed reactions define the metabolome of a biolog-
ical sample (Fiehn et al., 2000; Hall et al., 2002). By identifying and
quantifying the metabolome of a biological sample, metabolomics
defines the steady-state levels of the intermediates of metabolic
networks that constitute the sample, i.e., the metabolic pheno-
type. These data articulate the final expression (output) of the
genome at the molecular level. Hence it follows that comparing
the metabolome of a wild-type sample to that of a sample altered
by a mutation at a target gene (or some other perturbation of
the metabolic network) will provide clues for the function of that
targeted gene, and thus help define the basis for a biological trait
or biochemical phenotype associated with that allele. The strategy
of globally comparing outcomes of gene expression at different
molecular levels (i.e., transcriptomics and proteomics) has been at
the heart of functional genomics (Steinhauser et al., 2004; Winter
et al., 2007; Hruz et al., 2008; Mentzen and Wurtele, 2008; Mentzen
et al., 2008). More recently metabolomics has been used to char-
acterize specific metabolic networks, including those associated
with biotic and abiotic stresses (Broeckling et al., 2005), phenyl-
propanoid, and isoflavonoid biosynthesis (Farag et al., 2008),
glucosinolate metabolism (Wentzell et al., 2007), starch metab-
olism (Messerli et al., 2007), chloroplast-targeted gene products
(Lu et al., 2008, 2011; Ajjawi et al., 2010), and flavonol metabolism
(Yonekura-Sakakibara et al., 2008).

Because the functionality of the GUFs is by definition unde-
fined, it is near impossible to predict the metabolites whose accu-
mulation may be altered due to a loss-of-function allele at a GUF
locus. It is therefore desirable that the analytical technology used to
assess the metabolome of a mutant sample be as comprehensive as
possible. However, no complete metabolite list is available for any
organism. Moreover, even if such a list were available, due to the
diversity of chemical and physical properties of metabolites, and
the technical limitations in the dynamic range of chemical detec-
tors available to researchers, it would be a challenging proposition
to assess the entire metabolome of an organism. These techni-
cal limitations can be partially surmounted by a combination of
two strategies. First, metabolomics can be conducted with dif-
ferent analytical detectors (e.g., mass spectrometers, fluorescence,

UV/VIS absorbance, IR absorbance, NMR), and each of these
detectors can be used in combination with different separation
technologies [e.g., gas chromatography (GC), liquid chromatog-
raphy (LC), capillary electrophoresis (CE)]. Thus, by combining
different separation technologies with different detection systems,
it should be possible to expand the types of metabolites that can
be analyzed, and therefore cast a broader net for capturing and
measuring metabolites with vastly different chemical properties.
Second, in contrast to the analytical approaches in which global
analyses of metabolites are conducted independent of the chemi-
cal and physical properties of the metabolites, targeted metabolite
analysis can be employed. In this strategy metabolites are initially
partially purified or enriched prior to analysis, increasing the sen-
sitivity of the analysis. Therefore, by combining multiple such tar-
geted metabolic profiling strategies with different metabolomics
platforms, one gains both breadth and depth in the coverage of
the samples’ metabolomes.

This manuscript reports on the assembly of a consortium of
metabolomics and metabolite-profiling laboratories, which uni-
fies the advantages offered by different analytical approaches to
determine the effect of mutations in GUFs on the metabolome
of the tissue. This consortium (The Arabidopsis Metabolomics
Consortium) uses parallel technologies for the analysis of a large
number of metabolites. In partnership with biochemists, biosta-
tisticians, and bioinformaticists, the consortium has developed
resources that can be used for generating sophisticated hypotheses
regarding the metabolic and physiological functions of Arabidop-
sis GUFs. The cumulative data are available to the community via
the project database2 (Bais et al., 2010). These data and resulting
hypotheses provide the basis for additional informed and tar-
geted experimentation necessary for the empirical validation of
the biochemical and physiological functions of Arabidopsis GUFs.

RESULTS
ANALYTICAL PLATFORMS
The rationale of the Arabidopsis Metabolomics Consortium
(see footnote 2) is to combine parallel analytical outputs from
five laboratories that conduct metabolite-profiling studies on
aliquots of the identical plant material, and thus maximize the
portion of the metabolome that can be interrogated. In com-
bination, the analytical laboratories generate metabolite abun-
dance data for about 1500 metabolites (Table 1). Approximately
two-thirds of these data were obtained from four non-targeted
metabolomics approaches, each of which utilized different ana-
lytical platforms: gas chromatography time-of-flight mass spec-
trometry (GC–TOFMS; Fiehn group), ultra-high pressure liq-
uid chromatography–quadrupole time-of-flight mass spectrome-
try (UHPLC–QTOFMS; Sumner group), capillary electrophore-
sis mass spectrometry (CE–MS; Shulaev group), and liquid
chromatography mass spectrometry (LC–MS; Shulaev group).
These non-targeted approaches capture abundance informa-
tion on metabolites involved in primary metabolism, including
amino acids, organic acids, fatty acids, alcohols, carbohydrates,
nucleosides, and secondary metabolites, including chalcones,

2www.Plantmetabolomics.org

Frontiers in Plant Science | Technical Advances in Plant Science February 2012 | Volume 3 | Article 15 | 2

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science
http://www.frontiersin.org/Technical_Advances_in_Plant_Science/archive


Quanbeck et al. Arabidopsis metabolomics and gene annotation

Table 1 | Summary of metabolites/compounds identified by the analytical laboratories in the Arabidopsis Metabolomics Consortium.

Analytical platform Profiling Laboratory Number of metabolites

chemically annotated

Number of metabolites with

unknown chemical annotation

Total number of

metabolites

GC–TOFMS Fiehn 196 419 615

UHPLC–QTOFMS Sumner 176 157 333

Glycerolipids Welti 159 0 159

Fatty acids Nikolau 59 112 171

Cuticular waxes Nikolau 37 25 62

Phytosterols/tocopherols Lange 11 17 28

Chlorophylls/carotenoids Lange 6 3 9

CE–MS Shulaev 36 36 72

LC–MS Shulaev 57 10 67

Total 737 779 1516

flavonoids, flavonoid O-glycosides, glucosinolates, and terpenoids.
In addition to the non-targeted approaches, the Consortium also
used five targeted profiling methods to measure levels of glyc-
erolipids, fatty acids, cuticular waxes, phytosterols/tocopherols,
and chlorophylls/carotenoids. Currently, of the approximate 1500
analytes that are routinely detected, approximately 730 are chem-
ically defined (Table 1; Table S1 in Supplementary Material).

Merging data from such multiple analytical platforms requires
considerable care and attention to detail. Issues that were encoun-
tered include inconsistent naming of samples, and metabolites or
analytes, inconsistent organization of the tabular data, and the
need to accurately label and distinguish analytes whose chemical
identities were not established. The latter is particularly an issue
in establishing the degree of redundancy in the analyte abundance
data generated by the independent platforms. Overcoming these
organizational issues were primarily managed by a single “gate-
keeper” who manually curated data prior to entry and release on
the project database. In all cases, such inconsistencies were clar-
ified by direct feedback from the analytical lab responsible for
generating the data for each analytical platform.

In addition to these organizational and managerial issues, com-
bining data from independent platforms required normalization
of the data to ensure consistency in the data-structure, and thus
provide users a basis for extracting useful knowledge from the
integrated datasets. For example, some platforms reported analyte
abundances as integrated peak areas, whereas others had the abil-
ity to report concentrations per biomass dry weight. The issues
presented by this complexity were overcome by integrating two
normalization protocols. First, each analytical platform normal-
ized the data relative to an internal chemical standard, which was
added to the tissue to a known concentration prior to extrac-
tion. The chemical nature of this internal standard was specific to
each analytical platform, and all metabolite and analyte peaks were
normalized relative to this spiked standard. Second, each platform
conducted parallel analyses on aliquots the same mutant and wild-
type tissue samples, and for each analyte the relative ratio of its
abundance in the two tissue samples was calculated. The statistical
evaluation of the entire metabolome used these ratio data to cal-
culate a statistical distance measure that was invariant to arbitrary
scaling of each metabolite. The specific distance measure used was
primarily the Canberra distance and variance-weighted distance

FIGURE 1 | Distribution of significantly altered metabolites among

different mutants as detected by different analytical platforms

(identified in the insert).

(Dixon, in preparation), which is invariant to arbitrary scaling of
each analyte.

As an initial evaluation of the strategy to combine datasets,
the Consortium conducted a Pilot Study that evaluated the
metabolomes of 18 Arabidopsis mutants (Table S2 in Supplemen-
tary Material), combining metabolite abundance data gathered
from these different analytical platforms. Figure 1 integrates the
resulting dataset identifying the number of metabolites whose
abundance was significantly altered in each mutant as revealed
by each analytical platform. These analyses establish that by
combining datasets, access to substantially larger portion of the
metabolome was gained than was possible with any single platform
individually. In addition, each analytical platform revealed signif-
icantly altered metabolites in most of the mutants analyzed and
the platform that revealed the majority of the altered compounds
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differed among the individual mutants. For example, the fatty acid
platform detected the largest number of significant metabolite
changes in the At2g42560 mutant (SALK_063167), whereas the
cuticular wax platform revealed the largest number of metabo-
lite differences in the At5g19070 mutant (SALK_074697). This
enhanced capability therefore provides considerably more meta-
bolic information concerning the functionality of the gene that
has been targeted for analysis.

ANALYSIS OF METABOLITE ABUNDANCES
To illustrate the efficacy of the Consortium, nine series of
metabolomics studies, referenced as Experiments 1–9 (E1–E9)
were conducted on Arabidopsis stocks carrying T-DNA mutant
alleles. These experiments included profiling mutant stocks in
genes of known function (GKF) and GUFs. Thirty-nine T-DNA
mutant lines were selected based on their availability and expert
knowledge concerning each line that already existed within the
Consortium. An additional 64 GUF lines were selected based on
an association network (Lee et al., 2010), which included sequence
homology data, coexpression with GKF, information mined from
literature and similarity of phylogeny with GKF. Detailed infor-
mation concerning the selection of these GUFs is accessible on
the project database. The focus of this paper is on the results of
the initial three metabolomic experiments, E1, E2, and E3, which
collectively evaluated the metabolomes of 69 mutant lines; a com-
plete list of the T-DNA mutant lines used in these experiments is
identified in Table S3 in Supplementary Material and within the
project database www.PlantMetabolomics.org (Bais et al., 2010).
The mutants analyzed in E1, E2, and E3 were randomly placed in
each of the three experiments using a random number generator
to assign subjects to groups3.

DISTINGUISHING BETWEEN GENOTYPE-BASED AND
ENVIRONMENTALLY INDUCED CHANGES IN THE METABOLOME
A major goal of the Consortium is to reveal genotype-based differ-
ences in the metabolomes of the mutant stocks. However, the Con-
sortium had to initially cope with the fact that the metabolic status
of plants is altered with shifting environmental conditions, and
that plants have evolved complex mechanisms to mediate alter-
ations in gene expression and changes in rates of enzyme-catalyzed

3http://www.graphpad.com/quickcalcs/index.cfm

reactions. These alterations in cellular and metabolic processes
manifest changes in steady-state levels of metabolic intermediates,
i.e., changes in the metabolome (Nikiforova et al., 2005).

Therefore, to test whether the growth, analytical, and data inter-
pretation pipelines could reveal genotype-based differences in the
metabolome (in contrast to environmentally induced changes)
as a means of validating these platforms, a Pilot Study refer-
enced as the environmental impact experiment (EIE) “EIE2” was
conducted. In this experiment, seedlings of wild-type and a T-
DNA knockout line SALK_021108 (carrying a mutant allele in
the GUF, At1g52670) were exposed to environmental alterations
(light intensity, temperature, and desiccation stress) well beyond
the boundaries of the Consortium’s standard growth conditions
(Table 2). As expected, analysis of the metabolomics data obtained
from this experiment indicated that each of these environmental
perturbations affected the metabolome (Figure 2). Moreover, sta-
tistical analyses indicated by the visual separation of wild-type
samples from mutant samples, that it is possible to distinguish
the mutant metabolome from that of the wild-type irrespective
of the environmental perturbation. Namely, statistical distances
among mutant and wild-type samples are smaller than the dis-
tances between them. Therefore, this example illustrates that by
maintaining the growth conditions within a narrow range of
temperature (±2˚C), illumination intensity (±10 μE m−2 s−1),
and harvesting timeline (<2 min), the observed changes in the
metabolome will not reflect the effect of environmental pres-
sures on metabolism but rather reflect the consequence of genetic
influence of the mutant alleles.

VALIDATION OF HYPOTHESIS GENERATION FROM METABOLOMICS
DATA
As a means of validating the accuracy of hypotheses generated
from this combined metabolomics platform, the metabolome of a
mutant stock whose biochemical functionality is well established
was evaluated. The mutant selected for this validation experiment
is a gene involved in glutathione metabolism. In plants, glutathione
(GSH) plays important roles, including detoxifying photosyn-
thetically generated hydrogen peroxide, chelating heavy metal
ions and controlling cell size, and root development (Ohkama-
Ohtsu et al., 2008). This validation experiment used the mutant
stock (SALK_078745), which carries a T-DNA insertion knock-
out in At5g37830 that encodes for 5-oxoprolinase (5OPase). This

Table 2 | Growth conditions for environmental impact experiment.

Treatment Acronyma

Descriptor Temperature (˚C) Light intensity (μE/m2s) Harvest Delay (h) Wild-type Mutantb

Standard “normal” growth conditions 24 50 0 NW NM

1-h harvest delay 24 50 1 N1W N1M

3-h harvest delay 24 50 3 N3W N3M

Decreased light intensity 24 22 0 DLW DLM

Increased light intensity 24 85 0 ILW ILM

Positive temperature change 29 50 0 PTW PTM

Negative temperature change 19 50 0 NTW NTM

aSample label used for environmental impact experiment. bSALK_021108 allele in the GUF, At1g52670.
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FIGURE 2 | Multi-dimensional scaling plot of Environmental Impact

Experiment. Multi-dimensional scaling plot of the data generated in the
Environmental Impact Experiment reveals a clear separation of wild-type
samples (filled squares) from the mutant samples (open circles). Standard
“normal” growth conditions for the wild-type and At1g52670
(SALK_021108) mutant allele are denoted as NW and NM, respectively.
Similarly environmental perturbations (described inTable 2) labeled on
MDS plot for wild-type and mutant samples are as follows: positive

temperature change (PTW and PTM), negative temperature change (NTW
and NTM), decreased light intensity (DLW and DLM), increased light
intensity (ILW and ILM), 1 h harvest delay (N1W and N1M), and 3 h harvest
delay (N3W and N3M). This plot indicates that the metabolomes of the
wild-type samples and mutant samples can be differentiated even though
environmental growth conditions were perturbed beyond the normal limits
of the standard growth conditions defined in the Section “Materials and
Methods.”

enzyme catalyzes the conversion of 5-oxoproline (5OP) to gluta-
mate (Glu), and was initially discovered in plants in 1976 (Mazelis
and Pratt, 1976). The involvement of 5OPase in the degrada-
tion of GSH in Arabidopsis was established by Ohkama-Ohtsu
et al. (2008) who characterized this mutant. Inclusion of this
GKF insertion line in the metabolomics analyses has allowed the
Consortium to test its ability to generate an accurate hypothesis.
Further these analyses provide potentially new information as to
the consequences of knocking out OXP1 on the metabolome of
plants.

Ratio plot analysis of the metabolomics data from
SALK_078745 mutant identifies the hyper- and hypo-
accumulating metabolites, and visualizes the error associated with
the ratio calculation for each metabolite (Figure 3). Statistical
analysis (Student’s t -test) of the log-transformed abundance data
reveal 129 metabolites that are significantly different between the
oxp1 mutant and the wild-type. Adjusting for a false discovery
rate from multiple hypothesis testing based on the Benamini
and Hochberg (1995) algorithm, reduced this difference to nine
metabolites that have a p-value less than 0.05. Four of these nine
metabolites are annotated as unknown, leaving five chemically
defined metabolites, which are oxoproline, melibiose, succinic
acid, malic acid, and 4-benzyloxy-n-butyl-glucosinolate. Seven
of these significantly altered metabolites hyper-accumulate and
the other two hypo-accumulate in the mutant, with oxoproline
displaying the largest abundance change (Table 3). The fact that
oxoproline displays the largest change in abundance in the mutant
recapitulates the prior finding that At5g37830 encodes for 5OPase
(Ohkama-Ohtsu et al., 2008). Moreover, the additional meta-
bolic changes revealed by these analyses are an indication of the

FIGURE 3 | Log-ratio plot of the metabolome of the oxp1

(SALK_078745) mutant. The y -axis plots individual metabolites. The x -axis
plots log-transformed relative ratio of abundance of each metabolite in the
mutant sample normalized to the levels of that metabolite in the wild-type
control sample. The calculation of SE is described in the Section “Materials
and Methods.”

pleiotropic consequence of altering glutathione metabolism and
these can be further explored by mapping the chemically defined
metabolites on to metabolic pathways.
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Table 3 | Metabolites significantly altered between oxp1 mutant (SALK_078745) and wild-type.

Metabolite Ratio plot metabolite number Log2 (mutant)/(wild-type) False discovery rate adjusted p-value

Oxoproline 561 2.58 0.0001

Melibiose 542 1.63 0.0224

213179 708 0.95 0.0202

303992 972 0.95 0.0292

200489 768 0.87 0.0192

202893 637 0.59 0.0243

4-Benzyloxy-n-butyl-glucosinolate 1331 0.57 <0.0001

Malic acid 535 −0.36 0.0202

Succinic acid 595 −1.13 0.001

HYPOTHESIS GENERATION FROM METABOLOMICS DATA FOR GENES
OF UNKNOWN FUNCTIONS
To illustrate how the integrated metabolomics data can be cou-
pled with prior knowledge to provide a substantive hypothesis
concerning the functionality of a GUF, a specific example of a
hypothesis generated from the Consortium’s metabolomics analy-
ses is discussed. This example is the metabolomics analysis of the
mutant stock SALK_092408 in the gene At4g29540. The GO Mol-
ecular Function (Berardini et al., 2004) annotation associated with
At4g29540 is “transferase activity,” and TAIR annotates this gene
as a “bacterial transferase hexapeptide repeat-containing protein;
similar to bacterial transferase hexapeptide repeat-containing pro-
tein” (TAIR, August 2010). Sequence comparison analysis reveals
that the protein encoded by At4g29540 shares low sequence iden-
tity (28% at the translated amino acid level) with the E. coli lpxA
gene that is involved in Lipid A biosynthesis (Raetz and Whitfield,
2002). Lipid A is the glucosamine-based phospholipid domain
of the lipopolysaccharide that makes up the outer monolayer of
the outer membrane of most Gram-negative bacteria. Although
there have been scattered reports that Lipid A may occur in plants
(Raetz and Whitfield, 2002; Armstrong et al., 2006), it is generally
believed that Lipid A is a molecule characteristic only of Gram-
negative bacteria (Raetz and Whitfield, 2002; Raetz et al., 2007).
In silico analysis has revealed that the Arabidopsis genome con-
tains distant homologs of six Lipid A biosynthetic genes (lpxA,
At4g29540; lpxB, At2g04560; lpxC, At1g25210; lpxD, At4g05210;
lpxK, At3g20480; and kdtA, At5g03770; Raetz and Whitfield, 2002;
Liu et al., 2003). Further bioinformatics analysis of plant genomes
reveals that in addition to the above listed homologs, the Arabidop-
sis genome contains additional 4 paralogs of lpxC (At1g24793,
At1g24880, At1g25054, and At1g25141), and 1 additional para-
log of lpxD (At4g21220). To better understand the role of these
Lipid A biosynthetic homologs in plants, the metabolome of the
At4g29540 mutant was profiled and characterized.

Analysis of the SALK_092408 mutant allele (lpxA-homolog,
At4g29540) was done similarly to the analysis of oxp1 mutant.
False discovery rate adjusted p-values of t -test analyses failed to
identify significant changes in any single metabolite abundances in
the aerial tissues of this mutant relative to the wild-type (p-value
of <0.1; data not shown). Therefore, to allow for the parallel analy-
sis of all collected metabolite abundance data, a distance matrix
calculation (see Materials and Methods for equation) was used

to generate a statistical basis for comparing the metabolomes of
all mutants evaluated within the E3 experiment. This experiment
analyzed the metabolomes of 25 mutants, which included mutants
in 12 GUFs, and 13 mutants whose functionality was defined by
some prior experimentation and annotated with GO molecular
function terms.

The statistical distances among the mutant metabolomes is
represented by a hierarchical tree, which visualizes the relative
metabolic differences among the 25 mutants (Figure 4). This rep-
resentation indicates for example that the mutation in the GUF
At1g35710 is inconsequential to the metabolome of Arabidopsis,
as it maps closest to the wild-type. In contrast, the mutation
in gene At1g36180, which encodes for one of the two acetyl-
CoA carboxylases genes involved in the biosynthesis of fatty acids
and/or malonyl-CoA derived secondary metabolites generates the
largest change in the Arabidopsis metabolome. Interestingly, the
metabolome that is most similar to this gene is associated with the
mutant in At5g07990, which encodes flavonoid 3′-hydroxylase,
an enzyme involved in the biosynthesis of malonyl-CoA derived
flavonoids (Winkel-Shirley, 2001; Tohge et al., 2007). Further vali-
dation of this metabolome-based clustering approach for revealing
similarities in gene functions is the finding that At1g09430 and
At4g25000 are closely associated. The former encodes one of the
ATP-citrate lyase subunits (Fatland et al., 2002), and the latter
encodes an alpha-amylase gene involved in starch metabolism
(Smith et al., 2005). The significance of this close association
between these two metabolomes lies in the finding that knocking-
down ATP-citrate lyase activity results in the hyper-accumulation
of starch (Fatland et al., 2005). Although this association was
surprising when first described, it is further substantiated with
the current broader analysis of the metabolomes associated with
mutations in each of these two genes.

In terms of the Arabidopsis lpxA-homolog, At4g29540, the
metabolome of this mutant is most similar to At1g71890. The GO
molecular function annotation for this latter gene is:“carbohydrate
transmembrane transporter activity, sucrose:hydrogen symporter
activity, sugar:hydrogen symporter activity,” and it has also been
implicated as a transporter of biotin (Ludwig et al., 2000). The sim-
ilarities in the metabolomes of At4g29540 and At1g71890 mutants
implicate a similar metabolic function for these two genes, but
that interconnection is not necessarily apparent from the current
datasets.
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The parallel collection of morphological data within the Con-
sortium, revealed that the At4g29540 (SALK_092408; lpxA-2)
mutant showed a subtle visible growth phenotype; namely the
failure to develop root hairs (Figure 5). This root hair pheno-
type recapitulates in a second, independently isolated mutant
stock (lpxA-1), which occurs in the Wassilewskija (Ws) ecotype

background, isolated from the T-DNA insertion collection made
available at The Arabidopsis Knockout Facility at the University
of Wisconsin-Madison (Sussman et al., 2000). To ensure that this
phenotype was caused by the mutations at the At4g29540 locus,
a genetic allelism test was performed by intercrossing the lpxA-2
and lpxA-1 alleles. The recovery of the root hair phenotype in the

FIGURE 4 | Hierarchical cluster diagram of mutant alleles from

Experiment 3 (E3). The dissimilarity between a pair of genes was
computed from the mutant metabolomes using a variance-weighted
Manhattan distance measure described in the Section “Materials and

Methods,” and this distance measurement was used to generate the
cluster diagram. The specific mutant allele used to characterize each gene
locus, and the GO Molecular Function term that annotates each locus is
identified.

FIGURE 5 | Root phenotype analysis of lpxA-1 and lpxA-2 (SALK_092408) alleles. The heteroallelic cross of lpxA-1 and lpxA-2 (middle) recapitulates the
loss of root hair phenotype.
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heteroallelic plants that carry both the lpxA-2 and lpxA-1 alleles
establish that the lack of At4g29540-functionality is the cause of
this phenotype.

Therefore, a focused metabolomics analysis was performed
upon roots, applying the targeted platforms of lipidomics, fatty
acids, amino acids, and ceramides. This analysis revealed major
differences in the fatty acid and ceramide profiles of the mutant
roots. Specifically, an increase in the abundance of fatty acids with
odd-numbered carbon atoms and a distinctive accumulation of
ceramides that contain 2-hydroxy-fatty acids with odd-numbered
carbon atoms (i.e., 19, 21, 23, 25 carbons; Figure 6).

Genetic complementation was used to explore the possible
functionality of At4g29540 in catalyzing an acyl-transferase reac-
tion analogous to the lpxA-catalyzed reaction in lipid A biosyn-
thesis. The codon-optimized At4g29540 cDNA lacking the N-
terminal organelle-targeting sequence was expressed with the
vector pUC57 into the E. coli strain SM101, which harbors the
temperature sensitive lpxA-2(ts) allele that leads to a lethal phe-
notype at 42˚C (Galloway and Raetz, 1990). The SM101 strain
expressing the At4g29540 cDNA grew at 42˚C, whereas the con-
trol strain transformed with the empty pUC57 vector failed
to grow at this non-permissive temperature (Figure 7). There-
fore, this genetic complementation experiment demonstrates that
At4g29540-encoded protein has the capacity to catalyze an acyl-
transferase reaction that is required in the first step of lipid A
biosynthesis in E. coli.

These combined datasets lead to the following hypotheses: (1)
At4g29540 catalyzes an acyl-transferase reaction in Arabidopsis, as

evidenced by its ability to complement the E. coli lpxA mutant
strain SM101; and (2) the inability of At4g29540 mutant to form
root hairs is due either to the lack of metabolite product(s)
that require At4g29540-functionality, or to the accumulation of
the alternative metabolite(s) that accumulate in the absence of
this functionality. These are testable hypotheses that could not
have been formulated in the absence of the metabolomics data
generated by the Consortium. Thus, integrating metabolomics
data with other biological data, leads to the formulation of
detailed hypotheses that can be further explored by the research
community.

For example, similar analyses of the other Arabidopsis homologs
of the Lipid A biosynthetic genes (i.e., At1g24793, At1g24880,
At1g25054, At1g25141, At1g25210, At2g04560, At3g20480,
At4g05210,At4g21220,and At5g03770) would further test whether
these occur in a common pathway in Arabidopsis, as they occur in
bacteria. If so, it is expected that the metabolomes of these latter
mutants will mirror the metabolomic changes that are detected
in the At4g29540 mutant. Indeed, recent detailed analyses of the
subcellular location of these Arabidopsis protein homologs, and
analyses of mutants in these genes indicate that they are part
of a mitochondrial lipid metabolism pathways that may gener-
ate a Lipid X molecule, which itself is a known intermediate in
the biosynthesis of Lipid A in bacteria (Li et al., 2011). Although
the final lipid product of this Arabidopsis pathway is still to be
identified, the collected datasets indicate a connection between
mitochondrial lipid metabolism, ceramide metabolism, and root
hair formation.

FIGURE 6 | Schematic representation of At4g29540-functionality based on metabolomics data.
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FIGURE 7 | Genetic complementation of E. coli temperature sensitive

lpxA-2 (ts) allele with AtlpxA (At4g29540). (A) E. coli strains carrying the
wild-type LpxA allele (strain SM105) (1), or the temperature sensitive
lpxA-2(ts) allele (strain SM101) were transformed with the empty pUC57
vector (2) and recombinant pUC57 vector expressing the At4g29540 cDNA

(3). These strains were grown at the permissive temperature, 30˚C (A) and
non-permissive temperature, 42˚C (B). Complementation is evidenced by the
fact that the lpxA-2(ts) strain expressing the At4g29540 cDNA grew at 42˚C,
whereas this mutant strain transformed with the control empty vector failed
to grow at this non-permissive temperature.

DISCUSSION
By combining the analytical capabilities of six metabolomics labo-
ratories, this consortium has the ability to assess the accumulation
of about 1500 metabolite analytes of Arabidopsis, and of these,
730 metabolites are accurately annotated relative to their chemical
identity. Analysis of the altered metabolites in each Arabidop-
sis mutant illustrates that continuing the use of these diverse
analytical platforms will ensure that important metabolic differ-
ences for a diversity of different GUFs are captured. The Plant-
Metabolomics database provides downloadable data to researchers
to allow independent evaluation and generation of their own
hypotheses, autonomous of the consortium’s interpretation. Also
provided are tools for additional processing of the data that can
aid interpretation by researchers, particularly those who are not
familiar with metabolomics data. Specifically, the database can
generate metabolite abundance ratio plots between any particular
mutant and the appropriate wild-type controls, clustering analy-
ses, multi-dimensional scaling (MDS) capabilities, principle com-
ponent analysis plots, and random forest classifiers (Spearman,
1987; Breiman, 2001; Seber, 2008). Therefore hypotheses concern-
ing the functionality of the GUFs can be constructed based on these
statistical visualization outputs. Additional resources available in
the website include metadata, detailing the protocols for metabo-
lite extraction and analysis, metabolite annotation pages that link
to other databases, and search tools based on metabolite names
and pathway annotations. Thus, the database allows the research
community to be involved in interpreting the outcomes of the
metabolomics data generated by this consortium. The exemplary
analyses provided herein demonstrate how a community user can
utilize the consortium data, and database functionalities to gener-
ate a hypothesis concerning GUFs. Analogous analysis of a GKF
tested the soundness of the generated hypothesis and this outcome
should provide confidence to the community users on validity of
the generalized approach.

The use of metabolomics data to reveal gene functionality is
of particular significance in the case of GUFs that fail to gener-
ate a readily visible morphological phenotype in the mutant state.
Similar efforts have focused on determining the metabolomes of
genes encoding for chloroplast-targeted proteins (Lu et al., 2008,
2011; Ajjawi et al., 2010) and mutants that present an altered
starch metabolism phenotype (Messerli et al., 2007). The analy-
ses conducted within this consortium indicate that such silent
mutations will present an altered metabolome. The GUFs used in
these analyses were preselected on the basis that they presented a
silent mutant morphological phenotype. To date, the consortium
has analyzed 69 mutant alleles (Experiments E1–E3), and none of
these present an unaltered metabolome, i.e., these are not silent
mutants at the level of metabolic consequence. Using a thresh-
old log-ratio change of between −2 and +2 as an indication of
altered metabolite abundance, five mutant alleles showed less than
10 changes in metabolite abundance (the minimum number of
detected metabolic changes was 4 metabolites, associated with the
mutation in At1g58030), 55 mutant alleles show between 10 and
30 metabolic changes, and 9 mutant alleles showed more than 30
altered metabolite abundances; the highest number of detected
altered metabolites being 46.

By focusing subsequent studies on these altered biochemical
changes that are the consequence of a specific mutation, one has
the ability to work backward from the metabolome to the mutant
gene and extract knowledge concerning the functionality of that
gene. Extracting biological significance of the altered metabolome
relies on the accurate chemical annotation of the altered metabo-
lites. Although the fact that more than half of the detected
metabolome is chemically undefined limits this capability, the
illustrated examples validate this approach. In the instance of
the At5g37830 locus, our “blind” analyses rediscovered the known
functionality of this gene by revealing the hyper-accumulation of
its substrate, 5-oxoproline, as one of the few metabolic changes
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associated with mutations in this gene. In the second illustrative
example, mutations in At4g29540, revealed metabolic and mor-
phological alterations, and these provide a guide to experimen-
talists to enable mapping relationships between biochemical and
physiological responses of the mutant,and provide a means for for-
mulating more constrained hypotheses relative to the functionality
of the GUF.

MATERIALS AND METHODS
GENETIC MATERIAL
Seed stocks of Arabidopsis thaliana mutants used in these studies,
in ecotype Col-0 background (Alonso et al., 2003), were obtained
from ABRC. These stocks were propagated at Iowa State Univer-
sity, and stocks homozygous for the mutant allele were generated
(Tables S2 and S3 in Supplementary Material).

PLANT GROWTH CONDITIONS
Standardized plant growth conditions were used throughout these
studies to assess the effect of mutations on the metabolome of
Arabidopsis. Details of these growth conditions are provided in
the Supplementary Material and Plantmetabolomics.org. Ara-
bidopsis seedlings were grown in Petri dishes on defined sterile
growth medium. This growth medium contained mineral salts
supplemented with defined vitamin-mix and 0.1% (w/v) sucrose.
Growth conditions (temperature, illumination, and humidity)
were strictly controlled and maintained within strict limits to min-
imize environmentally induced alterations in metabolism. Specif-
ically, plants were grown for 16-days under constant illumination
(50 ± 10 μE m−2 s−1), constant temperature of 24 ± 2˚C, and at
100% relative humidity.

The exception to standard growth regime was used in the Pilot
Study EIE. In this experiment, plants were transferred to different
environments (at different temperatures or illumination levels)
during the last 24-h of growth (i.e., 16-days after transfer to the
standard growth-room; Table 2). Dishes were transferred from
standard growth condition to different environmental growth
rooms, where the temperature was above (29˚C) or below (19˚C)
the standard condition. Alternatively, the dishes were placed at dif-
ferent levels of illumination by moving either closer (higher light
intensity of 84 μE m−2 s−1) or further away (lower light inten-
sity of 22 μE m−2 s−1) from the light source while ensuring the
temperature remained at the standard condition.

HARVESTING PLANT MATERIALS FOR METABOLOMICS ANALYSIS
On the 16th day after transfer to the growth-room, aerial portions
of plants were harvested (growth stage 1.08–1.12 as defined by
Boyes et al., 2001), and frozen immediately by immersion in liq-
uid nitrogen, stored at −80˚C, freeze dried for 48 h, powderized
using 12–15 stainless steel balls for 2 min and aliquoted into tubes.
For two of the targeted metabolomics analyses platforms, cuticu-
lar waxes and lipidomics, metabolites were immediately extracted
from harvested tissue. Plates were harvested one at a time, and the
entire harvest was conducted under the same illumination level as
the growth conditions within a period of less than 45-s per dish.

To assess the effect of delayed harvesting following opening the
dishes (i.e., lowering the humidity level), plant tissues were har-
vested from dishes that were grown in the standard growth regime

and were harvested following a 45-s, 1 and 3-h delay after lids
were removed; in this experiment (Harvest Delay in Table 2), tis-
sues were quenched either by immersion in liquid nitrogen and
processed or extracted immediately, as detailed above. All plant
materials stored at −80˚C were shipped via overnight carriers to
the different analytical laboratories while packaged in dry-ice.

E. COLI COMPLEMENTATION ASSAY
The AtlpxA (At4g29540) cDNA was synthesized by GeneScript
USA Inc. (Piscataway, NJ, USA), codon-optimized for protein
production in E. coli. N-terminal modification to remove the 32
codons that encode an organelle-targeting peptide was conducted
via PCR. The amplified fragment was ligated into HindIII/EcoRI-
digested pUC57 and transformed into both E. coli strain SM101
[which carries the lpxA-2(ts) allele] and SM105 (which is the
progenitor wild-type for strain SM101), both obtained from E.
coli Genetic Stock Center (New Haven, CT, USA). E. coli stains,
SM105, SM101 + At4g29540, and SM101 + pUC57 were grown
in LB medium containing 1 mM IPTG (to induce expression of
the AtlpxA cDNA) at 30˚C (the permissive temperature) and 42˚C
(the non-permissive temperature).

METABOLOMICS ANALYTICAL PLATFORMS
Generally nine different analytical platforms were utilized to assess
the metabolome of harvested tissues. Four platforms utilized non-
targeted metabolomics analysis: GC–TOFMS, UPHLC–QTOFMS,
CE–MS, and LC–MS. The other platforms targeted analysis to spe-
cific classes of metabolites. These focused on identification of glyc-
erolipids, fatty acids, amino acids, ceramides, cuticular waxes, phy-
tosterols and tocopherols, chlorophylls, and carotenoids. Details of
the extraction protocols and analytical methods for each of these
platforms are provided in the Supplementary Materials and are
available on PlantMetabolomics.org.

DATA COMPILATION AND DISSEMINATION
The project data are stored in a web-based analysis system4

that allows users to actively search, visualize, and download the
data. Known metabolites are annotated with their chemical for-
mula, SMILES notation (Weininger, 1988), molecular weight,
and links to other databases. Links to chemical, pathway, and
genomic information from KEGG, ARACYC, MetNetDB, and
PubChem illuminate a metabolite’s role in a plant’s metabolic
network. The database is based on the minimal information of
a metabolomic experiment, MIAMet (Bino et al., 2004) stan-
dards to capture complete annotation of experiments and includes
metadata for the experiments along with metabolite abundance
data.

STATISTICAL ANALYSIS
In general, 6 separate batches of plant material (biological repli-
cates) were sent to each analytical laboratory. Missing values
caused by failed analyses were ignored in the statistical evalua-
tion. Measurements below the detection limit were replaced by
1/2 of the estimated detection limit. The log-ratio, log2(mt/wt),

4http://www.PlantMetabolomics.org
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was calculated for each metabolite; where mt and wt are the
average metabolite abundances in the mutant and wild-type,
respectively. The standard error (se) of the log-ratio was calcu-
lated using a delta-method approximation, se log-ratio = 1/ln 2√

[(semt/mt)2 + (sewt/wt)2], where semt and sewt are the stan-
dard errors of the average mutant and wild-type metabolite
abundances.

Integrated analysis of data from all metabolomic platforms
was based on averages over the biological replicates, the dis-
similarity between a pair of mutants was computed using a
variance-weighted Manhattan distance measure (Dixon et al., in
preparation).

Dij = sumk[|Yki − Ykj|/√(Y 2
ki + Y 2

kj)] where Y ki is the abun-

dance of metabolite k in genotype I. The term
√

(Y 2
ki + Y 2

kj)

estimates the SD of the difference in abundance. One property
of this distance measure, useful for the analysis of metabolomic
data, is its invariance to multiplicative rescaling of a metabolite
(Dixon et al., in preparation). That is, the contribution of metabo-
lite k is the same no matter whether Y ki is a peak area, a relative
abundance, or an absolute concentration, so long as each quantity
can be converted into another by multiplying by a constant, e.g.,
concentration = constant × abundance. Classical MDS was used
to visualize the pairwise distance matrix of mutant pairs in two
dimensions. The distances between points in the MDS plot are the
best two-dimensional approximation to all pairs of distances in
the distance matrix. Hierarchical clustering of genes based on the
metabolomes of mutant strains was performed using the average
linkage algorithm. The distance matrix computation, MDS, and
hierarchical clustering were performed in R.

To determine significantly altered compounds in the Pilot Study
mutants, metabolite data was analyzed in the following manner:
Log-transformed concentrations were used to calculate Pearson’s
correlation coefficient (r) between replicates. Any replicate whose
correlation coefficient was less than 0.7 with at least half of all
other replicates was removed from further analysis. Median val-
ues of the concentrations of all the detected metabolites in each

replicate for each mutant line were averaged and the mean of the
median values was used to scale the concentration levels of the
compounds in the replicates. Student’s t -test was performed to
identify significantly altered metabolites in each of the mutant
lines compared to wild-type. To control the false discovery rate
from multiple hypothesis testing, p-values from the t -tests were
further adjusted by the Benamini and Hochberg (1995) algo-
rithm. Adjusted p-value of less than 0.05 and fold change of either
greater or less than 2 as the cutoff to define significantly altered
metabolites.
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