Difference between revisions of "Journal Club"
Line 244: | Line 244: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/09/06 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-21 | |style="padding:.4em;"|24-21 | ||
Line 251: | Line 251: | ||
[https://doi.org/10.1101/2024.04.04.24305313 Single-cell RNA sequencing of human tissue supports successful drug targets] | [https://doi.org/10.1101/2024.04.04.24305313 Single-cell RNA sequencing of human tissue supports successful drug targets] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/08/ | + | |style="padding:.4em;" rowspan=1|2024/08/30 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-20 | |style="padding:.4em;"|24-20 | ||
Line 258: | Line 258: | ||
[https://doi.org/10.1016/j.immuni.2024.02.007 CD4+ T cell activation distinguishes response to antiPD-L1+anti-CTLA4 therapy from anti-PD-L1 monotherapy] | [https://doi.org/10.1016/j.immuni.2024.02.007 CD4+ T cell activation distinguishes response to antiPD-L1+anti-CTLA4 therapy from anti-PD-L1 monotherapy] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/08/ | + | |style="padding:.4em;" rowspan=1|2024/08/23 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-19 | |style="padding:.4em;"|24-19 | ||
Line 265: | Line 265: | ||
[https://doi.org/10.1016/j.ccell.2023.12.013 Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lungcancer] | [https://doi.org/10.1016/j.ccell.2023.12.013 Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lungcancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/08/ | + | |style="padding:.4em;" rowspan=1|2024/08/16 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-18 | |style="padding:.4em;"|24-18 | ||
Line 272: | Line 272: | ||
[https://doi.org/10.1016/j.xgen.2023.100473 Single-cell transcriptome landscape of circulating CD4+ T cell populations in autoimmune diseases] | [https://doi.org/10.1016/j.xgen.2023.100473 Single-cell transcriptome landscape of circulating CD4+ T cell populations in autoimmune diseases] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/08/ | + | |style="padding:.4em;" rowspan=1|2024/08/09 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-17 | |style="padding:.4em;"|24-17 | ||
Line 279: | Line 279: | ||
[https://doi.org/10.1016/j.cell.2023.11.037 A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma] | [https://doi.org/10.1016/j.cell.2023.11.037 A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/08/02 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-16 | |style="padding:.4em;"|24-16 | ||
Line 286: | Line 286: | ||
[https://doi.org/10.1016/j.ccell.2023.12.012 Single-cell and spatial profiling identify threeresponse trajectories to pembrolizumab andradiation therapy in triple negative breast cancer] | [https://doi.org/10.1016/j.ccell.2023.12.012 Single-cell and spatial profiling identify threeresponse trajectories to pembrolizumab andradiation therapy in triple negative breast cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/26 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-15 | |style="padding:.4em;"|24-15 | ||
Line 293: | Line 293: | ||
[https://doi.org/10.1186/s13073-024-01314-7 scDrugPrio: a framework for the analysisof single-cell transcriptomics to addressmultiple problems in precision medicinein immune-mediated infammatory diseases] | [https://doi.org/10.1186/s13073-024-01314-7 scDrugPrio: a framework for the analysisof single-cell transcriptomics to addressmultiple problems in precision medicinein immune-mediated infammatory diseases] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/19 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-14 | |style="padding:.4em;"|24-14 | ||
Line 300: | Line 300: | ||
[https://doi.org/10.1038/s43588-024-00597-5 Population-level comparisons of generegulatory networks modeled on highthroughput single-cell transcriptomics data] | [https://doi.org/10.1038/s43588-024-00597-5 Population-level comparisons of generegulatory networks modeled on highthroughput single-cell transcriptomics data] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/12 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-13 | |style="padding:.4em;"|24-13 | ||
Line 307: | Line 307: | ||
[https://doi.org/10.1101/2024.04.15.589472 Nicheformer: a foundation model for single-cell and spatial omics] | [https://doi.org/10.1101/2024.04.15.589472 Nicheformer: a foundation model for single-cell and spatial omics] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/07/05 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-12 | |style="padding:.4em;"|24-12 | ||
Line 314: | Line 314: | ||
[https://doi.org/10.1101/2023.05.29.542705 Large Scale Foundation Model on Single-cell Transcriptomics] | [https://doi.org/10.1101/2023.05.29.542705 Large Scale Foundation Model on Single-cell Transcriptomics] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/06/ | + | |style="padding:.4em;" rowspan=1|2024/06/28 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-11 | |style="padding:.4em;"|24-11 | ||
Line 321: | Line 321: | ||
[https://doi.org/10.1038/s41592-024-02201-0 scGPT: toward building a foundation modelfor single-cell multi-omics using generative AI] | [https://doi.org/10.1038/s41592-024-02201-0 scGPT: toward building a foundation modelfor single-cell multi-omics using generative AI] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/06/ | + | |style="padding:.4em;" rowspan=1|2024/06/21 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|24-10 | |style="padding:.4em;"|24-10 | ||
Line 402: | Line 402: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/10 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-29 | |style="padding:.4em;"|24-29 | ||
Line 409: | Line 409: | ||
[https://doi.org/10.1016/j.cell.2024.03.021 A pan-cancer analysis of the microbiome inmetastatic cancer] | [https://doi.org/10.1016/j.cell.2024.03.021 A pan-cancer analysis of the microbiome inmetastatic cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/07/03 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-28 | |style="padding:.4em;"|24-28 | ||
Line 416: | Line 416: | ||
[https://doi.org/10.1016/j.chom.2024.03.002 A specific enterotype derived from gut microbiomeof older individuals enables favorable responses toimmune checkpoint blockade therapy] | [https://doi.org/10.1016/j.chom.2024.03.002 A specific enterotype derived from gut microbiomeof older individuals enables favorable responses toimmune checkpoint blockade therapy] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/07/03 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-27 | |style="padding:.4em;"|24-27 | ||
Line 423: | Line 423: | ||
[https://doi.org/10.1016/j.chom.2024.02.010 Stratification of Fusobacterium nucleatum by localhealth status in the oral cavity defines its subspeciesdisease association] | [https://doi.org/10.1016/j.chom.2024.02.010 Stratification of Fusobacterium nucleatum by localhealth status in the oral cavity defines its subspeciesdisease association] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/06/ | + | |style="padding:.4em;" rowspan=1|2024/06/26 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-26 | |style="padding:.4em;"|24-26 | ||
Line 430: | Line 430: | ||
[https://doi.org/10.1080/19490976.2024.2309684 A universe of human gut-derived bacterialprophages: unveiling the hidden viral players inintestinal microecology] | [https://doi.org/10.1080/19490976.2024.2309684 A universe of human gut-derived bacterialprophages: unveiling the hidden viral players inintestinal microecology] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/06/ | + | |style="padding:.4em;" rowspan=1|2024/06/26 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-25 | |style="padding:.4em;"|24-25 | ||
Line 437: | Line 437: | ||
[https://doi.org/10.1038/s41388-024-02974-w Robustness of cancer microbiome signals over a broad range of methodological variation] | [https://doi.org/10.1038/s41388-024-02974-w Robustness of cancer microbiome signals over a broad range of methodological variation] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/06/ | + | |style="padding:.4em;" rowspan=1|2024/06/19 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-24 | |style="padding:.4em;"|24-24 | ||
Line 444: | Line 444: | ||
[https://doi.org/10.1038/s41586-024-07182-w A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche] | [https://doi.org/10.1038/s41586-024-07182-w A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/06/ | + | |style="padding:.4em;" rowspan=1|2024/06/19 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 456: | Line 456: | ||
|style="padding:.4em;"|YR Kim | |style="padding:.4em;"|YR Kim | ||
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [https://doi.org/10.1016/j.cell A cryptic plasmid is among the most numerous genetic elements in the human gut] | + | [https://doi.org/10.1016/j.cell.2024.01.039 A cryptic plasmid is among the most numerous genetic elements in the human gut] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2024/06/05 | |style="padding:.4em;" rowspan=1|2024/06/05 |
Revision as of 13:29, 3 June 2024
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2024/06/18 | Single-cell | 24-32 | EB Hong |
Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory |
2024/06/18 | Single-cell | 24-31 | JJ Heo |
scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses |
2024/06/18 | Single-cell | 24-30 | SM Han |
Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution |
2024/06/18 | Single-cell | 24-29 | HJ Choi | |
2024/06/11 | Single-cell | 24-28 | SA Choi | |
2024/06/11 | Single-cell | 24-27 | HJ Cha |
Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics |
2024/06/11 | Single-cell | 24-26 | YK Jung |
Brassinosteroid gene regulatory networks at cellular resolution in the Arabidopsis root |
2024/06/11 | Single-cell | 24-25 | HJ Lee | |
2024/06/04 | Single-cell | 24-24 | HK Lee |
Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas |
2024/06/04 | Single-cell | 24-23 | JI Lee |
Multimodal spatiotemporal phenotyping of human retinal organoid development |
2024/06/04 | Single-cell | 24-22 | JH Lee | |
2024/06/04 | Single-cell | 24-21 | JH Lee |
A single-cell analysis of the Arabidopsis vegetative shoot apex |
2024/05/28 | Single-cell | 24-20 | JH Lee |
Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq |
2024/05/28 | Single-cell | 24-19 | YH Lee | |
2024/05/28 | Single-cell | 24-18 | EB Yu | |
2024/05/28 | Single-cell | 24-17 | DY Won |
Spatial metatranscriptomics resolves host–bacteria–fungi interactomes |
2024/05/21 | Single-cell | 24-16 | SG Oh | |
2024/05/21 | Single-cell | 24-15 | SY Park | |
2024/05/21 | Single-cell | 24-14 | HS Moon | |
2024/05/21 | Single-cell | 24-13 | JH Nam |
Spatial cellular architecture predicts prognosis in glioblastoma |
2024/05/14 | Single-cell | 24-12 | HS Na | |
2024/05/14 | Single-cell | 24-11 | PK Kim |
Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity |
2024/05/14 | Single-cell | 24-10 | SH Kwon | |
2024/05/14 | Single-cell | 24-9 | Q Zhen | |
2024/05/07 | Single-cell | 24-8 | CR Leenaars | |
2024/05/07 | Single-cell | 24-7 | YR Kim | |
2024/05/07 | Single-cell | 24-6 | JY Kim |
Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases |
2024/05/07 | Single-cell | 24-5 | WJ Kim |
Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment |
2024/04/23 | Single-cell | 24-4 | G Koh |
Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease |
2024/04/23 | Single-cell | 24-3 | SH Ahn | |
2024/04/23 | Single-cell | 24-2 | EJ Sung | |
2024/04/23 | Single-cell | 24-1 | HJ Kim |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/08/30 | Single-cell | 23-24 | JW Yu | |
2023/08/09 | Single-cell | 23-23 | IS Choi |
Major data analysis errors invalidate cancer microbiome findings |
2023/08/02 | Single-cell | 23-22 | EJ Sung | |
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |