Difference between revisions of "Journal Club"
(277 intermediate revisions by 15 users not shown) | |||
Line 1: | Line 1: | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2024-2 scOmics | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2025/1/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|25-2 | ||
+ | |style="padding:.4em;"|YL Jung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.04.04.24305313 Single-cell RNA sequencing of human tissue supports successful drug targets] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2025/1/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|25-1 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.11.21.568145 ANDES: a novel best-match approach for enhancing gene set analysis in embedding spaces] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2025/1/7 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-34 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.09.24.614685 Evaluating the Utilities of Foundation Models in Single-cell Data Analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/31 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-33 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.09.24.614685 Predicting RNA-seq coverage from DNA sequence as a unifying model of gene regulation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/24 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-32 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.09.24.614685 scEMB: Learning context representation of genes based on large-scale single-cell transcriptomics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/17 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-31 | ||
+ | |style="padding:.4em;"|HB Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.09.09.611960 Mouse-Geneformer: A Deep Learning Model for Mouse Single-Cell Transcriptome and Its Cross-Species Utility] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/10 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-30 | ||
+ | |style="padding:.4em;"|YL Jung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.08.16.608180 Quantized multi-task learning for context-specific representations of gene network dynamics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/3 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-29 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.17632/wdxwy8gmrz.1 Systematic Functional Annotation and Visualization of Biological Networks] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-28 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-024-02303-9 CellRank 2: unified fate mapping in multiview single-cell data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/19 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-27 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.07.29.605556 scPRINT: pre-training on 50 million cells allows robust gene network predictions] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/12 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-26 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-46440-3 Bidirectional generation of structure and properties through a single molecular foundation model] | ||
+ | |} | ||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2024-2 Microbiome | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2025/1/8 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-70 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1080/19490976.2024.2418984 Fecal microbial marker panel for aiding diagnosis of autism spectrum disorders] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2025/1/8 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-69 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-024-01739-1 Multikingdom and functional gut microbiota markers for autism spectrum disorder] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-68 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-024-03390-9 A realistic benchmark for differential abundance testing and confounder adjustment in human microbiome studies] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-67 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-024-01728-4 Microbial community-scale metabolic modelling predicts personalized short-chain fatty acid production profiles in the human gut] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-66 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-52561-6 Gut metagenomes of Asian octogenarians reveal metabolic potential expansion and distinct microbial species associated with aging phenotypes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-65 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-52561-6 Gut microbiota wellbeing index predicts overall health in a cohort of 1000 infants] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/4 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-64 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-024-03320-9 VirRep: a hybrid language representation learning framework for identifying viruses from human gut metagenomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/4 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-63 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.06.27.601020 Ultrafast and accurate sequence alignment and clustering of viral genomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/12/4 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-62 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-46947-9 The OMG dataset: An Open MetaGenomic corpus for mixed-modality genomic language modeling] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-61 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-46947-9 Genomic language model predicts protein co-regulation and function] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-60 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.07.26.605391 Protein Set 1 Transformer: A protein-based genome language model to power high diversity viromics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-59 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.07.11.603044 Prophage-DB: A comprehensive database to explore diversity,distribution, and ecology of prophages] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-58 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-024-01904-y Strain‑resolved de‑novo metagenomic assembly of viral genomes and microbial 16S rRNAs] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-57 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-024-01876-z Prokaryotic‑virus‑encoded auxiliary metabolic genes throughout the global oceans] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-56 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.07.039 Unexplored microbial diversity from 2,500 food metagenomes and links with the human microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/6 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-55 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.04.17.589959 Pangenomes of Human Gut Microbiota Uncover Links Between Genetic Diversity and Stress Response] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/6 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-54 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.05.28.596318 vClassifier: a toolkit for species-level classification of prokaryotic viruses] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/6 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-53 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.07.26.605250 GRAViTy-V2: a grounded viral taxonomy application] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/10/16 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-52 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-52533-w Accurately predicting enzyme functions through geometric graph learning on ESMFold-predicted structures] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/10/16 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-51 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.06.27.600934 Improved detection of microbiome-disease associations via population structure-aware generalized linear mixed effects models (microSLAM)] | ||
+ | |} | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2024-1 scOmics | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/11/5 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-25 | ||
+ | |style="padding:.4em;"|HB Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1126/science.adj4857 A blueprint for tumor-infiltrating B cells across human cancers] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/10/29 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-24 | ||
+ | |style="padding:.4em;"|YL Jung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-48310-4 Systematic dissection of tumor-normal single-cell ecosystems across a thousand tumors of 30 cancer types] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/10/08 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-23 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-024-01314-7 scDrugPrio: a framework for the analysis of single‑cell transcriptomics to address multiple problems in precision medicine in immune‑mediated inflammatory diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/24 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-22 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-024-02856-4 A visual-language foundation model for computational pathology] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/10 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-21 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-024-02175-z SLIDE: Significant Latent Factor Interaction Discovery and Exploration across biological domains] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/03 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-20 | ||
+ | |style="padding:.4em;"|HB Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.ccell.2023.12.013 Clinical and molecular features of acquired resistance to immunotherapy in non-small cell lungcancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/30 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-19 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.06.04.597354 Cell-Graph Compass: Modeling Single Cells with Graph Structure Foundation Model] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/16 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-18 | ||
+ | |style="padding:.4em;"|YL Jung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.xgen.2023.100473 Single-cell transcriptome landscape of circulating CD4+ T cell populations in autoimmune diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/09 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-17 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43588-024-00597-5 Population-level comparisons of gene regulatory networks modeled on highthroughput single-cell transcriptomics data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/02 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-16 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.06.16.599201 node2vec2rank: Large Scale and Stable Graph Differential Analysis via Multi-Layer Node Embeddings and Ranking] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-15 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.xgen.2024.100553 Unified cross-modality integration and analysis of T cell receptors and T cell transcriptomes by low-resource-aware representation learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/19 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-14 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.07.18.549602 Contextual AI models for single-cell protein biology] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/12 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-13 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.04.15.589472 Nicheformer: a foundation model for single-cell and spatial omics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/05 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-12 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.05.29.542705 Large Scale Foundation Model on Single-cell Transcriptomics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-11 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-024-02201-0 scGPT: toward building a foundation modelfor single-cell multi-omics using generative AI] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-10 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-023-06139-9 Transfer learning enables predictions in network biology] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-9 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1158/0008-5472.CAN-23-2650 The Web-Based Portal SpatialTME Integrates Histological Images with Single-Cell and Spatial Transcriptomics to Explore the Tumor Microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/17 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-8 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-023-02117-1 SEVtras delineates small extracellular vesicles at droplet resolution from single-cell transcriptomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/10 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-7 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01728-5 A relay velocity model infers cell-dependent RNA velocity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/03 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-5 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-44206-x Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-6 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01734-7 Dandelion uses the single-cell adaptive immune receptor repertoire to explore lymphocyte developmental origins] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/05 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-4 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2023.11.026 Automatic cell-type harmonization and integration across Human Cell Atlas datasets] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/22 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-3 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-023-01994-w Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/15 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-2 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-021-00896-6 Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/08 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-1 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.xgen.2023.100383 Polygenic regression uncovers trait-relevant cellular contexts through pathway activation transformation of single-cell RNA sequencing data] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2024-1 Microbiome | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/10/02 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-51 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-024-03067-7 Strain-specific gut microbial signatures in type 2 diabetes identified in a cross-cohort analysis of 8,117 metagenomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/10/02 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-50 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-024-01832-x Gut virome-wide association analysis identifes cross-population viral signatures for infammatory bowel disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-48-2 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.48550/arXiv.1806.00064 Efficient Low-rank Multimodal Fusion with Modality-Specific Factors] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-48-1 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.48550/arXiv.1707.07250 Tensor Fusion Network for Multimodal Sentiment Analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-49 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.03.034 Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-47 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-024-03325-4 Gut microbiota DPP4-like enzymes are increased in type-2 diabetes and contribute to incretin inactivation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-46 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31510656 Deep learning with multimodal representation for pancancer prognosis prediction] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-45-2 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/32881682 Pathomic Fusion: An Integrated Framework for Fusing Histopathology and Genomic Features for Cancer Diagnosis and Prognosis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-45-1 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.ccell.2022.07.004 Pan-cancer integrative histology-genomic analysis via multimodal deep learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/09/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-44 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2024.03.005 A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/21 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-43-2 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.48550/arXiv.2303.00915 BiomedCLIP: a multimodal biomedical foundation model pretrained from fifteen million scientific image-text pairs] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/21 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-43-1 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://arxiv.org/abs/2103.00020 Learning Transferable Visual Models From Natural Language Supervision] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/21 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-42 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-022-01616-x BIONIC: biological network integration using convolutions] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-41 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01917-2 Protein remote homology detection and structural alignment using deep learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-41 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-024-07487-w Accurate structure prediction of biomolecular interactions with AlphaFold 3] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-39 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-023-01737-1 Gut microbiome-metabolome interactions predict host condition] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/08/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-38 | ||
+ | |style="padding:.4em;"|JY kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-024-02963-2 Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/31 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-37 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-024-01751-5 A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/31 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-36 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.12.11.571168 Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-35 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.06.04.596112 Compositional Differential Abundance Testing: Defining and Finding a New Type of Health-Microbiome Associations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-34 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.05.013 Discovery of antimicrobial peptides in the global microbiome with machine learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/17 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-33 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.05.029 Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/17 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-32 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-024-07336-w Paternal microbiome perturbations impact offspring fitness] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/10 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-31 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.crmeth.2024.100775 Interactions-based classification of a single microbial sample] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/10 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-30 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.04.10.588779 Accurate estimation of intraspecificmicrobial gene content variation inmetagenomic data with MIDAS v3 andStrainPGC] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-29 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.03.021 A pan-cancer analysis of the microbiome inmetastatic cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/07/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-28 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2024.03.002 A specific enterotype derived from gut microbiomeof older individuals enables favorable responses toimmune checkpoint blockade therapy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/26 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-27 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2024.02.010 Stratification of Fusobacterium nucleatum by localhealth status in the oral cavity defines its subspeciesdisease association] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/26 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-26 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1080/19490976.2024.2309684 A universe of human gut-derived bacterialprophages: unveiling the hidden viral players inintestinal microecology] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/19 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-25 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41388-024-02974-w Robustness of cancer microbiome signals over a broad range of methodological variation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/19 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-24 | ||
+ | |style="padding:.4em;"|JY Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-024-07182-w A distinct Fusobacterium nucleatum clade dominates the colorectal cancer niche] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/05 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-22 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.01.039 A cryptic plasmid is among the most numerous genetic elements in the human gut] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/05 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-21 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2024.03.014 Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-20 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.03.18.584290 Fecal microbial load is a major determinant of gut microbiome variation and aconfounder for disease associations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-19 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-024-07162-0 A host-microbiota interactome reveals extensive transkingdom connectivity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/22 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-18 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.02.02.578701 Metagenomic estimation of dietary intake from human stool] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/22 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-17 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-45793-z A metagenomic catalog of the early-life human gut virome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/08 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-16 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2024.01.08.574624 Large-scale computational analyses of gut microbial CAZyme repertoires enabled by Cayman] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/08 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-15 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-024-44720-6 Defining the biogeographical map and potential bacterial translocation of microbiome in human ‘surface organs’] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/01 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-14 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-42997-7 Gut microbial structural variation associates with immune checkpoint inhibitor response] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/01 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-13 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1080/19490976.2024.2307586 Fungal signature differentiates alcohol-associated liver disease from nonalcoholic fatty liver disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-12 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1080/19490976.2024.2302076 Incorporating metabolic activity, taxonomy and community structure to improve microbiome based predictive models for host phenotype prediction] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-11 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-42112-w Disease-specific loss of microbial cross feeding interactions in the human gut] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-7 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-023-02092-7 Multigroup analysis of compositions of microbiomes with covariate adjustments and repeated measures] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-9 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-40719-7 Microdiversity of the vaginal microbiome is associated with preterm birth] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-8 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-023-01584-8 Large language models improve annotation of prokaryotic viral proteins] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-10 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-42998-6 Clinically relevant antibiotic resistance genes are linked to a limited set of taxa within gut microbiome worldwide] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-6-2 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://academic.oup.com/nargab/article/2/2/lqaa023/5826153 Visualizing ’omic feature rankings and log-ratios using Qurro] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-6-1 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-019-10656-5 Establishing microbial composition measurement standards with reference frames] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-5 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-024-03166-1 AnnoPRO: a strategy for protein function annotation based on multi-scale protein representation and a hybrid deep learning of dual-path encoding] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-4 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-44289-6 Differential responses of the gut microbiome and resistome to antibiotic exposures in infants and adults] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-3 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-44290-z Effective binning of metagenomic contigs using contrastive multi-view representation learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-2 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41559-020-01353-4 Polarization of microbial communities between competitive and cooperative metabolism] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-1-2 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202303925 Metagenomic Insight into The Global Dissemination of The Antibiotic Resistome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/03/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|24-1-1 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1073/pnas.2008731118 Conjugative plasmids interact with insertion sequences to shape the horizontal transfer of antimicrobial resistance genes] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2024-1 Advanced scOmics Data Analysis | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-32 | ||
+ | |style="padding:.4em;"|EB Hong | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-023-07011-6 Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-31 | ||
+ | |style="padding:.4em;"|JJ Heo | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-021-22197-x scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-30 | ||
+ | |style="padding:.4em;"|SM Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1126/science.abi4882 Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-29 | ||
+ | |style="padding:.4em;"|HJ Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41590-024-01792-2 Human lung cancer harbors spatially organized stem-immunity hubs associated with response to immunotherapy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-28 | ||
+ | |style="padding:.4em;"|SA Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-021-27464-5 Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-27 | ||
+ | |style="padding:.4em;"|HJ Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.08.019 Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-26 | ||
+ | |style="padding:.4em;"|YK Jung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1534580722002519?via%3Dihub The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-25 | ||
+ | |style="padding:.4em;"|HJ Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41588-022-01100-4 Single-cell and bulk transcriptome sequencing identifies two epithelial tumor cell states and refines the consensus molecular classification of colorectal cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/04 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-24 | ||
+ | |style="padding:.4em;"|HK Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s42255-023-00876-x Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/04 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-23 | ||
+ | |style="padding:.4em;"|JI Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01747-2 Multimodal spatiotemporal phenotyping of human retinal organoid development] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/04 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-22 | ||
+ | |style="padding:.4em;"|JH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-024-07251-0 Immune microniches shape intestinal Treg function] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/06/04 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-21 | ||
+ | |style="padding:.4em;"|JH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.devcel.2021.02.021 A single-cell analysis of the Arabidopsis vegetative shoot apex] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-20 | ||
+ | |style="padding:.4em;"|JH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-40137-9 Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-19 | ||
+ | |style="padding:.4em;"|YH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-023-01462-3 Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-18 | ||
+ | |style="padding:.4em;"|EB Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.celrep.2022.111736 Spatial transcriptomics demonstrates the role of CD4 T cells in effector CD8 T cell differentiation during chronic viral infection] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-17 | ||
+ | |style="padding:.4em;"|DY Won | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01979-2 Spatial metatranscriptomics resolves host–bacteria–fungi interactomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-16 | ||
+ | |style="padding:.4em;"|SG Oh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-36325-2 Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-15 | ||
+ | |style="padding:.4em;"|SY Park | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41593-023-01452-y Single-nucleus genomics in outbred rats with divergent cocaine addiction-like behaviors reveals changes in amygdala GABAergic inhibition] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-14 | ||
+ | |style="padding:.4em;"|HS Moon | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41593-023-01455-9 Spatial transcriptomics reveals the distinct organization of mouse prefrontal cortex and neuronal subtypes regulating chronic pain] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-13 | ||
+ | |style="padding:.4em;"|JH Nam | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-39933-0 Spatial cellular architecture predicts prognosis in glioblastoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-12 | ||
+ | |style="padding:.4em;"|HS Na | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.celrep.2024.113784 Single-cell spatial transcriptomic and translatomic profiling of dopaminergic neurons in health, aging, and disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-11 | ||
+ | |style="padding:.4em;"|PK Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-022-30511-4 Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-10 | ||
+ | |style="padding:.4em;"|SH Kwon | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-021-26271-2 Spatial deconvolution of HER2-positive breast cancer delineates tumor-associated cell type interactions] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-9 | ||
+ | |style="padding:.4em;"|Q Zhen | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1021/acscentsci.3c01169 Single-Cell Analysis Reveals Cxcl14+ Fibroblast Accumulation in Regenerating Diabetic Wounds Treated by Hydrogel-Delivering Carbon Monoxide] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-8 | ||
+ | |style="padding:.4em;"|CR Leenaars | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41477-022-01291-y Single-cell RNA sequencing provides a high-resolution roadmap for understanding the multicellular compartmentation of specialized metabolism] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-7 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41556-023-01316-4 Single-cell spatial multi-omics and deep learning dissect enhancer-driven gene regulatory networks in liver zonation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-6 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-022-35319-w Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/05/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-5 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cmet.2022.07.010 Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/23 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-4 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41593-023-01334-3 Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/23 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-3 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1136/gutjnl-2023-330243 Single-cell transcriptomic analysis deciphers heterogenous cancer stem-like cells in colorectal cancer and their organ-specific metastasis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/23 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-2 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-022-31519-6 Single cell sequencing identifies clonally expanded synovial CD4+ TPH cells expressing GPR56 in rheumatoid arthritis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/04/23 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|24-1 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.ccell.2023.09.011 Progenitor-like exhausted SPRY1+CD8+ T cells potentiate responsiveness to neoadjuvant PD-1 blockade in esophageal squamous cell carcinoma] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2023-2 scOmics | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/20 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-40 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-023-02035-2 Population-level integration of single-cell datasets enables multi-scale analysis across samples] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/06 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-39 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43587-023-00514-x scDiffCom: a tool for differential analysis of cell–cell interactions provides a mouse atlas of aging changes in intercellular communication] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/30 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-38 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-022-01467-z Modeling intercellular communication in tissues using spatial graphs of cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/16 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-37 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41588-023-01523-7 Precise identification of cell states altered in disease using healthy single-cell references] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/09 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-36 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://aacrjournals.org/clincancerres/article/29/19/3924/729105/Learning-Individual-Survival-Models-from-PanCancer Learning Individual Survival Models from PanCancer Whole Transcriptome Data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/02 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-35 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-023-01971-3 Dictys: dynamic gene regulatory network dissects developmental continuum with single-cell multiomics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/12 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-34 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.science.org/doi/10.1126/sciimmunol.adf4968 Preexisting tumor-resident T cells with cytotoxic potential associate with response to neoadjuvant anti–PD-1 in head and neck cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/05 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-33 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41588-022-01273-y MHC II immunogenicity shapes the neoepitope landscape in human tumors] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-32 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-023-06130-4 Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-31 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-37353-8 Pan-cancer classification of single cells in the tumour microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/10/31 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-30 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01686-y Single-cell mapping of combinatorial target antigens for CAR switches using logic gates] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/10/24 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-29 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01782-z Comparative analysis of cell–cell communication at single-cell resolution] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-28 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43018-023-00566-3 Phenotypic diversity of T cells in human primary and metastatic brain tumors revealed by multiomic interrogation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/19 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-27 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-023-02324-5 An integrated tumor, immune and microbiome atlas of colon cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/12 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-26 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-022-01476-y Multi-omic single-cell velocity models epigenome–transcriptome interactions and improves cell fate prediction] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/05 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-25 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.immuni.2023.04.010 Recruitment of epitope-specific T cell clones with a low-avidity threshold supports efficacy against mutational escape upon re-infection] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2023-2 Microbiome | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/21 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-66 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-023-01607-w Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/21 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-65 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-023-01439-2 A predicted CRISPR-mediated symbiosis between uncultivated archaea] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-64 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-023-01692-x Integrating compositional and functional content to describe vaginal microbiomes in health and disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-63 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01696-w Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-62 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-023-06431-8 Mapping the T cell repertoire to a complex gut bacterial community] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/02/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-61 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.07.03.547607 Multi-view integration of microbiome data for identifying disease-associated modules] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-60 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.09.28.559994 Phage-bacteria dynamics during the first years of life revealed by trans-kingdom marker gene analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-59 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41593-023-01361-0 Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/17 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-58 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.11.21.568153 Metagenomic Immunoglobulin Sequencing (MIG-Seq) Exposes Patterns of IgA Antibody Binding in the Healthy Human Gut Microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/17 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-57 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-41042-x Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/10 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-56 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41592-023-02018-3 Fast and robust metagenomic sequence comparison through sparse chaining with skani] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2024/01/10 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-55 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-023-02599-8 Bacterial SNPs in the human gut microbiome associate with host BMI] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-54 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1080/19490976.2023.2245562 Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-53 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.10.005 Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-52 | ||
+ | |style="padding:.4em;"|YR Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.xcrm.2023.101251 Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-51 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2023.05.046 Ultra-deep sequencing of Hadza hunter-gatherers recovers vanishing gut microbes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-50 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-023-01472-7 Altered infective competence of the human gut microbiome in COVID-19] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-49 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://onlinelibrary.wiley.com/doi/full/10.1002/aisy.202300342 Host-Variable-Embedding Augmented Microbiome-Based Simultaneous Detection of Multiple Diseases by Deep Learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-48 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-39264-0 A data-driven approach for predicting the impact of drugs on the human microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/12/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-47 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.04.06.535777 Activation of programmed cell death and counter-defense functions of phage accessory genes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-46 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-39459-5 Top-down identification of keystone taxa in the microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-45 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/22 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-44 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-023-03028-2 Reconstruction of the last bacterial common ancestor from 183 pangenomes reveals a versatile ancient core genome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/22 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-43 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01868-8 Generation of accurate, expandable phylogenomic trees with uDance] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/08 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-42 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.immuni.2023.04.003 Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/08 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-41 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.immuni.2023.04.017 Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/01 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-40 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.15252/msb.202311525 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/11/01 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-39 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-023-01953-y Identification of mobile genetic elements with geNomad] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/10/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-38 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-023-02407-3 Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/10/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-37 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-023-02424-2 The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/10/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-36 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1080/19490976.2023.2224474 Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-35 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.08.12.553040 The defensome of complex bacterial communities] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-34 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2023.03.011 Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-33 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43587-022-00306-9 Toward an improved definition of a healthy microbiome for healthy aging] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-32 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43587-022-00287-9 Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-31 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-023-01614-x Statistical modeling of gut microbiota for personalized health status monitoring] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-30 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.7554/eLife.50240 Adjusting for age improves identification of gut microbiome alterations in multiple diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-29 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-023-01370-6 Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/09/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-28 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.01.003 Longitudinal comparison of the developing gut virome in infants and their mothers] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2023-1 ADVANCED MICROBIOME DATA ANALYSIS | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-24 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2020.03.005 Structure of the Mucosal and Stool Microbiome in Lynch Syndrome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-23 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-019-1237-9 Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-22 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.jare.2022.03.007 Roles of oral microbiota and oral-gut microbial transmission in hypertension] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-21 | ||
+ | |style="padding:.4em;"|SY Lim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2022.08.009 Human gut microbiota stimulate defined innate immune responses that vary from phylum to strain] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-20 | ||
+ | |style="padding:.4em;"|BS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-023-02217-7 Gut microbial metabolism of 5-ASA diminishes its clinical efficacy in inflammatory bowel disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-19 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.01.004 Deficient butyrate-producing capacity in the gut microbiome is associated with bacterial network disturbances and fatigue symptoms in ME/CFS] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/23 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-18 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.ccell.2022.11.013 Gut microbiota-mediated nucleotide synthesis attenuates the response to neoadjuvant chemoradiotherapy in rectal cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/23 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-17 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2021.06.019 Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/23 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-16 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-022-05181-3 Identification of trypsin-degrading commensals in the large intestine] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/16 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-15 | ||
+ | |style="padding:.4em;"|JP Hong | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-022-05546-8 Questioning the fetal microbiome illustrates pitfalls of low-biomass microbial studies] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/16 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-14 | ||
+ | |style="padding:.4em;"|MR Jang | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.01.013 Tissue-resident Lachnospiraceae family bacteria protect against colorectal carcinogenesis by promoting tumor immune surveillance] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/16 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-13 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2022.09.005 Pan-cancer analyses reveal cancer-type-specific fungal ecologies and bacteriome interactions] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/09 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-12 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2022.09.015 A pan-cancer mycobiome analysis reveals fungal involvement in gastrointestinal and lung tumors] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/09 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-11 | ||
+ | |style="padding:.4em;"|HR Shin | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-021-01030-7 Multi-kingdom microbiota analyses identify bacterial–fungal interactions and biomarkers of colorectal cancer across cohorts] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/09 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-10 | ||
+ | |style="padding:.4em;"|SG Oh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s42255-022-00716-4 The antitumour effects of caloric restriction are mediated by the gut microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/02 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-9 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-022-01964-3 Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/02 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-8 | ||
+ | |style="padding:.4em;"|SM Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-022-01913-0 Drivers and determinants of strain dynamics following fecal microbiota transplantation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/02 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-7 | ||
+ | |style="padding:.4em;"|YY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2022.11.023 Mobile genetic elements from the maternal microbiome shape infant gut microbial assembly and metabolism] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-6 | ||
+ | |style="padding:.4em;"|SH Heo | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.01.018 Mother-to-infant microbiota transmission and infant microbiota development across multiple body sites] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-5 | ||
+ | |style="padding:.4em;"|SY Yang | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-023-36633-7 Population-level impacts of antibiotic usage on the human gut microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-4 | ||
+ | |style="padding:.4em;"|YH Yoon | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-022-05438-x Enterococci enhance Clostridioides difficile pathogenesis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-3 | ||
+ | |style="padding:.4em;"|DH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1002/imt2.61 Targeting keystone species helps restore the dysbiosis of butyrate‐producing bacteria in nonalcoholic fatty liver disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-2 | ||
+ | |style="padding:.4em;"|YJ Roh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1002/advs.202203115 Differential Oral Microbial Input Determines Two Microbiota Pneumo-Types Associated with Health Status] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-1 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2022.08.021 Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2023-1 scOmics | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/30 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-24 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.01.17.524482 Decoupling the correlation between cytotoxic and exhausted T lymphocyte transcriptomic signatures enhances melanoma immunotherapy response prediction from tumor expression] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/09 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-23 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.07.28.550993 Major data analysis errors invalidate cancer microbiome findings] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/02 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-22 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43018-022-00475-x A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and cell-extrinsic therapeutic targets] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-21 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43018-022-00433-7 Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/19 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-20 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-022-01342-x Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/12 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-19 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41587-022-01288-0 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/05 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-18 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-023-02371-y Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-17 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.patter.2022.100651 Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-16 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.ccell.2022.10.008 High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-15 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-022-02828-2 Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/31 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-14 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-022-32838-4 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/24 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-13 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s43018-021-00292-8 Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/17 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-12 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.cell.2022.11.028 Integrative single-cell analysis of cardiogenesis indentifies developmental trajectories and non-conding mutations in congenital heart disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/10 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-11 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2022.12.20.521311 Supervised discovery of interpretable gene programs from single-cell data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/03 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-10 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-022-05435-0 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-9 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41588-022-01141-9 Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/03/22 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-8 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.08.05.502989v1 MetaTiME: Meta-components of the Tumor Immune Microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/03/08 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-7 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41590-022-01262-7 Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/02/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-6 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.03.16.484513v1 Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating T cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/02/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-5 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-022-01799-y A T cell resilience model associated with response to immunotherapy in multiple tumor types] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/31 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-4 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41588-022-01134-8 Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/25 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-3 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/35649411/ Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/17 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-2 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1535610822003178 Pan-cancer integrative histology-genomic analysis via multimodal deep learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|23-1 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/35803260/ Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2023-1 Microbiome | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-27 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.05.024 Enterosignatures define common bacterial guilds in the human gut microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-26 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-023-02902-3 PhyloMed: a phylogeny-based test of mediation effect in microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-25 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.chom.2023.05.027 The TaxUMAP atlas: Efficient display of large clinical microbiome data reveals ecological competition in protection against bacteremia] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-24 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://dx.doi.org/10.1038/nbt.3704 Measurement of bacterial replication rates in microbial communities] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-23 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-023-01564-4 Skin microbiome diferentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-22 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.xcrm.2023.100920 Enrichment of oral-derived bacteria in inflamed colorectal tumors and distinct associations of Fusobacterium in the mesenchymal subtype] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/08/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-21 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-023-05989-7 Profiling the human intestinal environment under physiological conditions] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/28 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-20 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-023-01494-1 Genome-centric metagenomics reveals the host-driven dynamics and ecological role of CPR bacteria in an activated sludge system] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-19 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.patter.2022.100658 Enhanced metagenomic deep learning for disease prediction and consistent signature recognition by restructured microbiome 2D representations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/07/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-18 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s13059-022-02809-5 Gene fow and introgression are pervasive forces shaping the evolution of bacterial species] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-17 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1186/s40168-022-01435-4 Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi‑omic analyses] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/23 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-16 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-022-33397-4 Deciphering microbial gene function using natural language processing] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/16 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-15 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2022.11.28.518265 Rethinking bacterial relationships in light of their molecular abilities] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/06/02 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-14 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.immuni.2022.08.016 The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn’s disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/26 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-13 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41591-018-0203-7 Antigen discovery and specification of immunodominance hierarchies for MHCIIrestricted epitopes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/19 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-12 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2022.10.11.511790 Single Cell Transcriptomics Reveals the Hidden Microbiomes of Human Tissues] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/05/12 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-11 | ||
+ | |style="padding:.4em;"|JY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-017-0096-0 Stability of the human faecal microbiome in a cohort of adult men] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/04/28 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-10 | ||
+ | |style="padding:.4em;"|WJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41564-017-0084-4 Metatranscriptome of human faecal microbial communities in a cohort of adult men] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/03/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-9 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1016/j.ccell.2022.09.009 Tumor microbiome links cellular programs and immunity in pancreatic cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/03/17 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-8 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41467-022-32832-w Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/03/10 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-7 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1038/s41586-022-05620-1 The person-to-person transmission landscape of the gut and oral microbiomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/02/21 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-6 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2023.01.30.526328 BIRDMAn: A Bayesian differential abundance framework that enables robust inference of host-microbe associations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/02/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-5 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41564-022-01157-1 Phage–host coevolution in natural populations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/31 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-4 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-022-29968-0 A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-3 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.05.19.492684v1 Scalable power analysis and effect size exploration of microbiome community differences with Evident] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/17 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-2 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.08.05.502982v1 Phanta: Phage-inclusive profiling of human gut metagenomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2023/01/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|23-1 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010373 Computational approach to modeling microbiome landscapes associated with chronic human disease progression] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2022 scOmics | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/12/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-32 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.08.19.504505v1 SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/11/29 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-31 | ||
+ | |style="padding:.4em;"|JH Cha, SB Baek, IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.pnas.org/doi/10.1073/pnas.2105859118 Representation learning of RNA velocity reveals robust cell transitions] | ||
+ | [https://www.nature.com/articles/s41467-022-34188-7 UniTVelo: temporally unified RNA velocity reinforces single-cell trajectory inference] | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867421015774 Mapping transcriptomic vector fields of single cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/11/22 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-30 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-022-31535-6 Network-based machine learning approach to predict immunotherapy response in cancer patients] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/11/08 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-29 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.05.04.490536v1 Modeling fragment counts improves single-cell ATAC-seq analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/10/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-28 | ||
+ | |style="padding:.4em;"|G Koh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41586-022-04718-w Extricating human tumour immune alterations from tissue inflammation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/13 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-25 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.06.15.495325v1 T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/06 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-26 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41587-021-01091-3 Identifying phenotype-associated subpopulations by integrating bulk and single-cell sequencing data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/01 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-27 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.12.06.471401v1 MIRA: Joint regulatory modeling of multimodal expression and chromatin accessibility in single cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/25 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-24 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1535610822000654 Immune phenotypic linkage between colorectal cancer and liver metastasis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-23 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2022.02.05.479217 Biologically informed deep learning to infer gene program activity in single cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-22 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s43018-022-00356-3 Cell type and gene expression deconvolution with BayesPrism enables Bayesian integrative analysis across bulk and single-cell RNA sequencing in oncology] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-21 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34462589/ Mapping single-cell data to reference atlases by transfer learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/21 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-20 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://doi.org/10.1101/2021.10.31.466532 Pan-cancer mapping of single T cell profiles reveals a TCF1:CXCR6-CXCL16 regulatory axis essential for effective anti-tumor immunity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-19 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34845454/ Identifying disease-critical cell types and cellular processes across the human body by integration of single-cell profiles and human genetics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-18 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.06.07.447430v2 Metacells untangle large and complex single-cell transcriptome networks] | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-019-1812-2 MetaCell: analysis of single-cell RNA-seq data using K-nn graph partitions] | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02667-1 Metacell‑2: a divide‑and‑conquer metacell algorithm for scalable scRNA‑seq analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/06/23 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-17 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34675423/ Co-varying neighborhood analysis identifies cell populations associated with phenotypes of interest from single-cell transcriptomics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/06/09 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-16 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34426704/ Integrating T cell receptor sequences and transcriptional profiles by clonotype neighbor graph analysis (CoNGA)] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/06/02 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-15 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34986867/ Hepatocellular carcinoma patients with high circulating cytotoxic T cells and intra-tumoral immune signature benefit from pembrolizumab: results from a single-arm phase 2 trial] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/05/19 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-14 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/35199064/ Effect of imputation on gene network reconstruction from single-cell RNA-seq data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/05/12 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-13 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/35105355/ Diagnostic Evidence GAuge of Single cells (DEGAS): a flexible deep transfer learning framework for prioritizing cells in relation to disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/04/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-12 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/35172892/ Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/03/25 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-11 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34663807/ Single cell T cell landscape and T cell receptor repertoire profiling of AML in context of PD-1 blockade therapy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/03/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-10 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34594031/ Systematic investigation of cytokine signaling activity at the tissue and single-cell levels] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/03/04 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-9 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34852236/ Neoantigen-driven B cell and CD4 T follicular helper cell collaboration promotes anti-tumor CD8 T cell responses] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/25 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-8 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34930412/ MultiMAP: dimensionality reduction and integration of multimodal data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/18 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-7 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2020.10.19.345983v2 CellRank for directed single-cell fate mapping] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/11 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-6 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34653365/ Single-cell analyses reveal key immune cell subsets associated with response to PD-L1 blockade in triple-negative breast cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/04 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-5 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34390642/ Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-4 | ||
+ | |style="padding:.4em;"|EJ Sung | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34767762/ Single-cell analysis of human non-small cell lung cancer lesions refines tumor classification and patient stratification] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-3 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34914499/ Pan-cancer single-cell landscape of tumor-infiltrating T cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-2 | ||
+ | |style="padding:.4em;"|JW Yu | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34597583/ Atlas of clinically distinct cell states and ecosystems across human solid tumors] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|22-1 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34489465/ Single-cell ATAC and RNA sequencing reveal pre-existing and persistent cells associated with prostate cancer relapse] | ||
+ | |} | ||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2022 Microbiome | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/12/28 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-34 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.08.02.502504v1 A novel in silico method employs chemical and protein similarity algorithms to accurately identify chemical transformations in the human gut microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/11/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-33 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.09.13.460160v3 Inference of disease-associated microbial biomarkers based on metagenomic and metatranscriptomic data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/11/22 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-32 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867422009199?via%3Dihub Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/10/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-31 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41564-022-01121-z Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-30 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S193131282200049X Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-29 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.10.06.463341v2.full SynTracker: a synteny based tool for tracking microbial strains] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/06 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-28 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41587-022-01226-0 Identification of antimicrobial peptides from the human gut microbiome using deep learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/09/01 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-27 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41586-022-04648-7 Discovery of bioactive microbial gene products in inflammatory bowel disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-26 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s43588-022-00247-8 Large-scale microbiome data integration enables robust biomarker identification] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-25 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-022-30512-3 Predicting cancer prognosis and drug response from the tumor microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-24 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.cell.com/cell-reports/pdf/S2211-1247(22)00770-7.pdf Thousands of small, novel genes predicted in global phage genomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-23 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01231-0 MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/28 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-22 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41586-022-04862-3 Biosynthetic potential of the global ocean microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-21 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://journals.asm.org/doi/10.1128/msystems.00050-22 Compositionally Aware Phylogenetic Beta-Diversity Measures Better Resolve Microbiomes Associated with Phenotype] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-20 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41596-020-00480-3 Tutorial: assessing metagenomics software with the CAMI benchmarking toolkit disease] | ||
+ | [https://www.nature.com/articles/s41592-022-01431-4 Critical Assessment of Metagenome Interpretation: the second round of challenges] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/06/24 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-19 | ||
+ | |style="padding:.4em;"|SH Ann | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S2666379121002561 Identification of Faecalibacterium prausnitzii strains for gut microbiome-based intervention in Alzheimer’s-type dementia] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/06/10 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-18 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-022-01688-4 Microbiome and metabolome features of the cardiometabolic disease spectrum] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/06/03 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-17 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02195-w Functional and genetic markers of niche partitioning among enigmatic members of the human oral microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/05/27 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-16 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.02.21.480893v1 Integrating phylogenetic and functional data in microbiome studies] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/05/20 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-15 | ||
+ | |style="padding:.4em;"|MY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02473-1 Pandora: nucleotide-resolution bacterial pan-genomics with reference graphs] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/05/13 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-14 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009442 Multivariable association discovery in population-scale meta-omics studies] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/04/08 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-13 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://journals.asm.org/doi/10.1128/mSystems.00252-19 Comprehensive Analysis Reveals the Evolution and Pathogenicity of Aeromonas, Viewed from Both Single Isolated Species and Microbial Communities] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/04/01 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-12 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-022-02610-4 AGAMEMNON: an Accurate metaGenomics And MEtatranscriptoMics quaNtificatiON analysis suite] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/03/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-11 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02200-2 Metapangenomics of the oral microbiome provides insights into habitat adaptation and cultivar diversity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/03/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-10 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomemedicine.biomedcentral.com/articles/10.1186/s13073-022-01011-3 Microbiota of the prostate tumor environment investigated by whole-transcriptome profiling] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/25 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-9 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02576-9 Species-resolved sequencing of low-biomass or degraded microbiomes using 2bRAD-M] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/18 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-8 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34893089/ Microbial co-occurrence complicates associations of gut microbiome with US immigration, dietary intake and obesity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/11 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-7 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34517888/ Gut microbial determinants of clinically important improvement in patients with rheumatoid arthritis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/02/04 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-6 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34880502/ Gut microbiota modulates weight gain in mice after discontinued smoke exposure] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/28 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-5 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34819672/ The human microbiome encodes resistance to the antidiabetic drug acarbose] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/28 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-4 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34618582/ Commensal bacteria promote endocrine resistance in prostate cancer through androgen biosynthesis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/14 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-3 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34551799/ The influence of the gut microbiome on BCG-induced trained immunity] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-2 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/34912116/ Towards the biogeography of prokaryotic genes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/01/07 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-1 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/29347966/ ReprDB and panDB: minimalist databases with maximal microbial representation] | ||
+ | |} | ||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2022 Microbiome Special JC | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" | Date | ||
+ | !scope="col" style="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-15 | ||
+ | |style="padding:.4em;"|HY Kang | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.07.06.499075v1 Maast: genotyping thousands of microbial strains efficiently] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-14 | ||
+ | |style="padding:.4em;"|YJ Roh | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.06.16.496510v2 MIDAS2: Metagenomic Intra-species Diversity Analysis System] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/30 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-13 | ||
+ | |style="padding:.4em;"|SC Yang | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.02.01.478746v2 Scalable microbial strain inference in metagenomic data using StrainFacts] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/26 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-12 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2022.02.15.480535v1 StrainPanDA: linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/26 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-11 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01251-w Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/26 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-10 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41587-021-01102-3 Fast and accurate metagenotyping of the human gut microbiome with GT-Pro] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/19 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-9 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41587-020-00797-0 inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/19 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-8 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genome.cshlp.org/content/early/2021/07/22/gr.265058.120 Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/19 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-7 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1931312821002365 Dispersal strategies shape persistence and evolution of human gut bacteria] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/09 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-6 | ||
+ | |style="padding:.4em;"|SH Ahn | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867421003524 The long-term genetic stability and individual specificity of the human gut microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/09 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-5 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02042-y Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/08/09 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-4 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000102 Evolutionary dynamics of bacteria in the gut microbiome within and across hosts] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-3 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://elifesciences.org/articles/42693 Extensive transmission of microbes along the gastrointestinal tract] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-2 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(19)30041-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312819300411%3Fshowall%3Dtrue Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2022/07/29 | ||
+ | |style="padding:.4em;" rowspan=1|Microbiome | ||
+ | |style="padding:.4em;"|22-1 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/nmeth.3802 Strain-level microbial epidemiology and population genomics from shotgun metagenomics] | ||
+ | |} | ||
+ | |||
+ | |||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2021-2nd semester | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" stype="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/11/23 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-39 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.cell.com/cell/fulltext/S0092-8674(21)00942-9#secsectitle0025 Chromatin and gene-regulatory dynamics of the developing human cerebral cortex at single-cell resolution] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/11/16 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-38 | ||
+ | |style="padding:.4em;"|SB Back | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.02.09.430114v2 Single-cell ATAC and RNA sequencing reveal pre-existing and persistent subpopulations of cells associated with relapse of prostate cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/11/09 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-37 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.03.16.435578v1 Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/11/02 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-36 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.07.28.453784v1 Functional Inference of Gene Regulation using Single-Cell Multi-Omics] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/10/26 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-35 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/2021.03.24.436532v1 Single-cell analyses reveal a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/10/19 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-34 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.cell.com/cancer-cell/fulltext/S1535-6108(21)00165-3 Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/10/05 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-33 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1535610821001173 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/09/28 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-32 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1074761321001199 Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/09/14 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-31 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-021-01232-w Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/09/07 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-30 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-021-01323-8 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/08/31 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-29 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/abs/pii/S0092867420316135 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/08/24 | ||
+ | |style="padding:.4em;" rowspan=1|Single-cell | ||
+ | |style="padding:.4em;"|21-28 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41586-021-03552-w Interpreting type 1 diabetes risk with genetics and single-cell epigenomics] | ||
+ | |} | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2021-1st semester | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" stype="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/06/03 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|21-27 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867421000726 Massive expansion of human gut bacteriophage diversity] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-26 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1931312821001451 The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/05/27 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-25 | ||
+ | |style="padding:.4em;"|JK Yoon | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1931312820306703?dgcid=rss_sd_all Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/05/20 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|21-24 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://science.sciencemag.org/content/366/6471/eaax9176 A metagenomic strategy for harnessing the chemical repertoire of the human microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-23 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-019-10927-1 Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/05/13 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|21-22 | ||
+ | |style="padding:.4em;"|SA Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41564-018-0306-4 Gut microbiome structure and metabolic activity in inflammatory bowel disease] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-21 | ||
+ | |style="padding:.4em;"|HJ Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-020-01183-8 Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/05/06 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|21-20 | ||
+ | |style="padding:.4em;"|JY Ma | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-020-18476-8 A predictive index for health status using species-level gut microbiome profiling] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-19 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41586-019-1237-9 Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/04/29 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|21-18 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-021-21475-y Gastrointestinal microbiota composition predicts peripheral inflammatory state during treatment of human tuberculosis] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-17 | ||
+ | |style="padding:.4em;"|SR You | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1931312820301694 Structure of the Mucosal and Stool Microbiome in Lynch Syndrome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/04/22 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|21-16 | ||
+ | |style="padding:.4em;"|HH Eom | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://science.sciencemag.org/content/369/6506/936 Cross-reactivity between tumor MHC class 1-restricted antigens and an enterococcal bacteriophage] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-15 | ||
+ | |style="padding:.4em;"|JH Park | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41564-020-00831-6 Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/04/15 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-14 | ||
+ | |style="padding:.4em;"|MH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-020-01223-3 The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/04/08 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-13 | ||
+ | |style="padding:.4em;"|YY Jang | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-019-14177-z Impact of commonly used drugs on the composition and metabolic function of the gut microbiota] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/04/01 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-12 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867420305638 Personalized Mapping of Drug Metabolism by the Human Gut Microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/03/25 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-11 | ||
+ | |style="padding:.4em;"|JM Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.cell.com/fulltext/S0092-8674(17)30107-1 Mining the Human Gut Microbiota for Immunomodulatory Organisms] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/03/18 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-10 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41586-020-2095-1 Microbiome analyses of blood and tissues suggest cancer diagnostic approach] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2021/03/11 | ||
+ | |style="padding:.4em;" rowspan=1|- | ||
+ | |style="padding:.4em;"|21-9 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://science.sciencemag.org/content/368/6494/973 The human tumor microbiome is composed of tumor type-specific intracellular bacteria] | ||
+ | |} | ||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2021 | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" stype="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/02/22 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|21-8 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41590-020-0784-4 Functional CRISPR dissection of gene networks controlling human regulatory T cell identity] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-7 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867420306887 Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/02/15 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|21-6 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41588-020-00721-x Single-cell epigenomic analyses implicate candidate causal variants at inherited risk loci for Alzheimer’s and Parkinson’s diseases] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-5 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-020-14766-3 Trajectory-based differential expression analysis for single-cell sequencing data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/02/08 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|21-4 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41588-018-0156-2 Genetic determinants of co-accessible chromatin regions in activated T cells across humans] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-3 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S009286742030341X Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2021/02/01 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|21-2 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867419308967?via%3Dihub Single-Cell Analysis of Crohn's Disease Lesions Identifies a Pathogenic Cellular Module Associated with Resistance to Anti-TNF Therapy] | ||
+ | |- | ||
+ | |style="padding:.4em;"|21-1 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41467-020-15956-9 Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line] | ||
+ | |} | ||
+ | |||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2020-1st semester | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" stype="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=3|2021/02/01 | ||
+ | |style="padding:.4em;" rowspan=3|- | ||
+ | |style="padding:.4em;"|20-15 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/32393797/ Multi-omic single-cell snapshots reveal multiple independent trajectories to drug tolerance in a melanoma cell line] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-14 | ||
+ | |style="padding:.4em;"|JW Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/30595452/ Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment Within Human Melanoma] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-13 | ||
+ | |style="padding:.4em;"|JW Seo | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/30388455/ A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2020/06/09 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|20-12 | ||
+ | |style="padding:.4em;"|JY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31974247/ Single-cell Transcriptional Diversity Is a Hallmark of Developmental Potential] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-11 | ||
+ | |style="padding:.4em;"|JH Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31675496/ Landscape and Dynamics of Single Immune Cells in Hepatocellular Carcinoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2020/06/02 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|20-10 | ||
+ | |style="padding:.4em;"|HY Seo | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/32103181/ Peripheral T Cell Expansion Predicts Tumour Infiltration and Clinical Response] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-9 | ||
+ | |style="padding:.4em;"|KH Hong | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/30388456/ Defining T Cell States Associated With Response to Checkpoint Immunotherapy in Melanoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2020/05/26 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|20-8 | ||
+ | |style="padding:.4em;"|JY Seong | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31915379/ Rapid Non-Uniform Adaptation to Conformation-Specific KRAS(G12C) Inhibition] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-7 | ||
+ | |style="padding:.4em;"|OY Min | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31959990/ Targeted Therapy Guided by Single-Cell Transcriptomic Analysis in Drug-Induced Hypersensitivity Syndrome: A Case Report] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2020/05/19 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|20-6 | ||
+ | |style="padding:.4em;"|SN Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/32066951/ Distinct Microbial and Immune Niches of the Human Colon] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-5 | ||
+ | |style="padding:.4em;"|DJ Park | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31375813/ Massively Parallel Single-Cell Chromatin Landscapes of Human Immune Cell Development and Intratumoral T Cell Exhaustion] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2020/05/12 | ||
+ | |style="padding:.4em;" rowspan=2|- | ||
+ | |style="padding:.4em;"|20-4 | ||
+ | |style="padding:.4em;"|SY Park | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/29434354/ Single-cell Gene Expression Reveals a Landscape of Regulatory T Cell Phenotypes Shaped by the TCR] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-3 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/30078704/ A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2020/04/28 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|20-2 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/32014031/ scAI: An Unsupervised Approach for the Integrative Analysis of Parallel Single-Cell Transcriptomic and Epigenomic Profiles] | ||
+ | |- | ||
+ | |style="padding:.4em;"|20-1 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://pubmed.ncbi.nlm.nih.gov/31792411/ Single-cell Multiomic Analysis Identifies Regulatory Programs in Mixed-Phenotype Acute Leukemia] | ||
+ | |- | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2019-2nd semester | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" stype="padding:.4em" | Team | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/10/15 | ||
+ | |style="padding:.4em;" rowspan=2|Microbiome | ||
+ | |style="padding:.4em;"|19-51 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1931312819303488 Obese Individuals with and without Type 2 Diabetes Show Different Gut Microbial Functional Capacity and Composition] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-50 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-019-0722-6 Clustering co-abundant genes identifies components of the gut microbiome that are reproducibly associated with colorectal cancer and inflammatory bowel disease] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/10/08 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|19-49 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41587-019-0206-z Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-48 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/739011v1 Assessment of computational methods for the analysis of single-cell ATAC-seq data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/10/01 | ||
+ | |style="padding:.4em;" rowspan=2|Microbiome | ||
+ | |style="padding:.4em;"|19-47 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S1931312819303026 Meta-Analysis Reveals Reproducible Gut Microbiome Alterations in Response to a High-Fat Diet] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-46 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867419307731 Tumor Microbiome Diversity and Composition Influence Pancreatic Cancer Outcomes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/09/24 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|19-45 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://genome.cshlp.org/content/early/2019/04/01/gr.243725.118 The accessible chromatin landscape of the murine hippocampus at single-cell resolution] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-44 | ||
+ | |style="padding:.4em;"|SB Baek | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S009286741830446X Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/09/17 | ||
+ | |style="padding:.4em;" rowspan=2|Microbiome | ||
+ | |style="padding:.4em;"|19-43 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://science.sciencemag.org/content/365/6449/eaau4735 A sparse covarying unit that describes healthy and impaired human gut microbiota development] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-42 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867419307810 Large-Scale Analyses of Human Microbiomes Reveal Thousands of Small, Novel Genes] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/09/10 | ||
+ | |style="padding:.4em;" rowspan=2|Single-cell | ||
+ | |style="padding:.4em;"|19-41 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867419307329?via%3Dihub Intra- and Inter-cellular Rewiring of the Human Colon during Ulcerative Colitis] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-40 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/nbt.4042 Multiplexed droplet single-cell RNA-sequencing using natural genetic variation] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/09/03 | ||
+ | |style="padding:.4em;" rowspan=2|Microbiome | ||
+ | |style="padding:.4em;"|19-39 | ||
+ | |style="padding:.4em;"|NY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S193131281930352X?via%3Dihub The Landscape of Genetic Content in the Gut and Oral Human Microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-38 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867419307755?via%3Dihub Benchmarking Metagenomics Tools for Taxonomic Classification] | ||
+ | |} | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2019 | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/08/20 | ||
+ | |style="padding:.4em;"|19-37 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/719088v1 Coexpression uncovers a unified single-cell transcriptomic landscape] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-36 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/586859v1 Single-cell interactomes of the human brain reveal cell-type specific convergence of brain disorders] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=3|2019/08/14 | ||
+ | |style="padding:.4em;"|19-35 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004075 Proportionality: a valid alternative to correlation for relative data] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-34 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41598-017-16520-0 propr: An R-package for Identifying Proportionally Abundant Features Using Compositional Data Analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-33 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41591-018-0157-9 Robust prediction of response to immune checkpoint blockade therapy in metastatic melanoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/08/13 | ||
+ | |style="padding:.4em;"|19-32 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/s41592-018-0254-1 A test metric for assessing single-cell RNA-seq batch correction] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-31 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867419305598 Comprehensive Integration of Single-Cell Data] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/08/08 | ||
+ | |style="padding:.4em;"|19-30 | ||
+ | |style="padding:.4em;"|JH Cha | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867418313941 Defining T Cell States Associated with Response to Checkpoint Immunotherapy in Melanoma] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-29 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S009286741831242X High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/08/07 | ||
+ | |style="padding:.4em;"|19-28 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.biorxiv.org/content/10.1101/555557v1 A single-cell reference map for human blood and tissue T cell activation reveals functional states in health and disease] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-27 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S009286741831568X Dysfunctional CD8 T Cells Form a Proliferative, Dynamically Regulated Compartment within Human Melanoma] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/07/30 | ||
+ | |style="padding:.4em;"|19-26 | ||
+ | |style="padding:.4em;"|IS Choi | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/nm.4466 High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-25 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.sciencedirect.com/science/article/pii/S0092867418311784 A Cancer Cell Program Promotes T Cell Exclusion and Resistance to Checkpoint Blockade] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/07/23 | ||
+ | |style="padding:.4em;"|19-24 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/26006008 COMPASS identifies T-cell subsets correlated with clinical outcomes.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-23 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.nature.com/articles/ncomms14825 Sensitive detection of rare disease-associated cell subsets via representation learning] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=3|2019/05/30 | ||
+ | |style="padding:.4em;"|19-22 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30936547 Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-21 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30936548 Metagenomic analysis of colorectal cancer datasets identifies cross-cohort microbial diagnostic signatures and a link with choline degradation] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-20 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30664783 Microbial network disturbances in relapsing refractory Crohn's disease.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=3|2019/05/23 | ||
+ | |style="padding:.4em;"|19-19 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30867587 New insights from uncultivated genomes of the global human gut microbiome] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-18 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30745586 A new genomic blueprint of the human gut microbiota] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-17 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30661755 Extensive Unexplored Human Microbiome Diversity Revealed by Over 150,000 Genomes from Metagenomes Spanning Age, Geography, and Lifestyle.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/05/16 | ||
+ | |style="padding:.4em;"|19-16 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29311644 Dynamics of metatranscription in the inflammatory bowel disease gut microbiome.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-15 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29335555 Metatranscriptome of human faecal microbial communities in a cohort of adult men.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/05/09 | ||
+ | |style="padding:.4em;"|19-14 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30193113 Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous FMT.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-13 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30193112 Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/05/02 | ||
+ | |style="padding:.4em;"|19-12 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30753825 Distinct Immune Cell Populations Define Response to Anti-PD-1 Monotherapy and Anti-PD-1/Anti-CTLA-4 Combined Therapy.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-11 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30778252 Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/4/11 | ||
+ | |style="padding:.4em;"|19-10 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30479382 Lineage tracking reveals dynamic relationships of T cells in colorectal cancer.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-9 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30523328 Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/4/4 | ||
+ | |style="padding:.4em;"|19-8 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29942092 Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-7 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29942094 Global characterization of T cells in non-small-cell lung cancer by single-cell sequencing] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/3/28 | ||
+ | |style="padding:.4em;"|19-6 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/28319088 Reference component analysis of single-cell transcriptomes elucidates cellular heterogeneity in human colorectal tumors.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-5 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/28622514 Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=3|2019/3/21 | ||
+ | |style="padding:.4em;"|19-4 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29988129 Phenotype molding of stromal cells in the lung tumor microenvironment.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-3-1 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30787436 A single-cell molecular map of mouse gastrulation and early organogenesis] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-3 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/30787437 The single-cell transcriptional landscape of mammalian organogenesis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2019/3/14 | ||
+ | |style="padding:.4em;"|19-2 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29961579 Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment] | ||
+ | |- | ||
+ | |style="padding:.4em;"|19-1 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29198524 Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer] | ||
+ | |} | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2018 | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2018/06/14 | ||
+ | |style="padding:.4em;"|18-12 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=A+pan-cancer+analysis+of+enhancer+expression+in+nearly+9000+patient+samples A Pan-Cancer Analysis of Enhancer Expression in Nearly 9000 Patient Samples.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|18-11 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=Machine+learning+identifies+stemness+features+associated+with+oncogenic+dedifferentiation Machine Learning Identifies Stemness Features Associated with Oncogenic Dedifferentiation.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2018/06/07 | ||
+ | |style="padding:.4em;"|18-10 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=Developmental+and+oncogenic+programs+in+H3K27M+gliomas+dissected+by+single-cell+RNA-seq Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|18-9 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=Chemoresistance+evolution+in+triple-negative+breast+cancer+delineated+by+single-cell+sequencing Chemoresistance Evolution in Triple-Negative Breast Cancer Delineated by Single-Cell Sequencing.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2018/05/31 | ||
+ | |style="padding:.4em;"|18-8 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=Mapping+human+pluripotent+stem+cell+differentiation+pathways+using+high+throughput+single-cell+RNA-sequencing Mapping human pluripotent stem cell differentiation pathways using high throughput single-cell RNA-sequencing.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|18-7 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=A+single-cell+RNA-seq+survey+of+the+developmental+landscape+of+the+human+prefrontal+cortex A single-cell RNA-seq survey of the developmental landscape of the human prefrontal cortex.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2018/05/24 | ||
+ | |style="padding:.4em;"|18-6 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=Single-cell+RNA+sequencing+identifies+celltype-specific+cis-eQTLs+and+co-expression+QTLs Single-cell RNA sequencing identifies celltype-specific cis-eQTLs and co-expression QTLs.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|18-5 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=FOCS%3A+a+novel+method+for+analyzing+enhancer+and+gene+activity+patterns+infers+an+extensive+enhancer-promoter+map FOCS: a novel method for analyzing enhancer and gene activity patterns infers an extensive enhancer-promoter map.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2018/05/17 | ||
+ | |style="padding:.4em;"|18-4 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29149608 A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|18-3 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/29610481 A global transcriptional network connecting noncoding mutations to changes in tumor gene expression.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2018/05/10 | ||
+ | |style="padding:.4em;"|18-2 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=Inferring+regulatory+element+landscapes+and+transcription+factor+networks+from+cancer+methylomes Inferring regulatory element landscapes and transcription factor networks from cancer methylomes.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|18-1 | ||
+ | |style="padding:.4em;"|DS Bae | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/28129544 Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma.] | ||
+ | |} | ||
+ | {|class=wikitable style="text-align:center;" | ||
+ | |+style="text-align:left;font-size:12pt" | 2017 | ||
+ | |- | ||
+ | !scope="col" style="padding:.4em" |Date | ||
+ | !scope="col" style="padding:.4em" | Paper<br/>index | ||
+ | !scope="col" style="padding:.4em" | Presenter | ||
+ | !scope="col" style="padding:.4em" | Paper title | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/06/28 | ||
+ | |style="padding:.4em;"|17-36 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/28104840 Tumor aneuploidy correlates with markers of immune evasion and with reduced response to immunotherapy.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-35 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/27240091 Landscape of tumor-infiltrating T cell repertoire of human cancers.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/06/14 | ||
+ | |style="padding:.4em;"|17-34 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://biorxiv.org/content/early/2015/09/01/025908 The landscape of T cell infiltration in human cancer and its association with antigen presenting gene expression.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-33 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.08.052 A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/06/07 | ||
+ | |style="padding:.4em;"|17-32 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.tandfonline.com/doi/full/10.1080/2162402X.2016.1253654 Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-31 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.celrep.2016.03.075 Genomic Correlates of Immune-Cell Infiltrates in Colorectal Carcinoma.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/05/31 | ||
+ | |style="padding:.4em;"|17-30 | ||
+ | |style="padding:.4em;"|DS Bae | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.02.065 Genomic and Transcriptomic Features of Response to Anti-PD-1 Therapy in Metastatic Melanoma.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-29 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.celrep.2016.12.019 Pan-cancer Immunogenomic Analyses Reveal Genotype-Immunophenotype Relationships and Predictors of Response to Checkpoint Blockade.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/05/24 | ||
+ | |style="padding:.4em;"|17-28 | ||
+ | |style="padding:.4em;"|EB Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.12.022 Systemic Immunity Is Required for Effective Cencer Immunotherapy.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-27 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.10.020 Linking the Human Gut Microbiome to Inflammatory Cytokine Production Capacity.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/05/17 | ||
+ | |style="padding:.4em;"|17-26 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.10.018 Host and Environmental Factors Influencing Individual Human Cytokine Responses.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-25 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.10.017 A Functional Genomics Approach to Understand Variation in Cytokine Production in Humans.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/04/26 | ||
+ | |style="padding:.4em;"|17-24 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1038%2FNMETH.4177 Pooled CRISPR screening with single-cell transcriptome readout.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-23 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.11.039 Dissecting Immune Circuits by Linking CRISPR-Pooled Screens with Single-Cell RNA-Seq.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/04/12 | ||
+ | |style="padding:.4em;"|17-22 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.cell.2016.11.038 Perturb-Seq: Dissecting Molecular Circuits with Scalable Single-Cell RNA Profiling of Pooled Genetic Screens.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-21 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1038%2Fnbt.3569 Wishbone identifies bifurcating developmental trajectories from single-cell data.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/04/05 | ||
+ | |style="padding:.4em;"|17-20 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://biorxiv.org/content/early/2017/02/21/110668 Reversed graph embedding resolves complex single-cell developmental trajectories.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-19 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1038%2Fnmeth.4150 Single-cell mRNA quantification and differential analysis with Census.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/03/29 | ||
+ | |style="padding:.4em;"|17-18 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1016%2Fj.celrep.2016.12.060 Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-17 | ||
+ | |style="padding:.4em;"|DS Bae | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/26051941 Single-Cell Network Analysis Identifies DDIT3 as a Nodal Lineage Regulator in Hematopoiesis.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/03/22 | ||
+ | |style="padding:.4em;"|17-16 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/27580035 Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-15 | ||
+ | |style="padding:.4em;"|EB Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/27281220 Dissecting direct reprogramming from fibroblast to neuron using single-cell RNA-seq.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/03/15 | ||
+ | |style="padding:.4em;"|17-14 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/?term=10.1126%2Fscience.aad0501 Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-13 | ||
+ | |style="padding:.4em;"| | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/26084335 Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/02/28 | ||
+ | |style="padding:.4em;"|17-12 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [https://www.ncbi.nlm.nih.gov/pubmed/27824113 A Comprehensive Characterization of the Function of LincRNAs in Transcriptional Regulation Through Long-Range Chromatin Interactions.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-11 | ||
+ | |style="padding:.4em;"|JE Shim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//pubmed.gov/27851969 Epigenomic Deconvolution of Breast Tumors Reveals Metabolic Coupling between Constituent Cell Types.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/02/21 | ||
+ | |style="padding:.4em;"|17-10 | ||
+ | |style="padding:.4em;"|EB Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://biorxiv.org/content/early/2016/12/30/097451 Convergence of dispersed regulatory mutations predicts driver genes in prostate cancer.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-09 | ||
+ | |style="padding:.4em;"|EB Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//pubmed.gov/27723759 Chromatin structure-based prediction of recurrent noncoding mutations in cancer.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/02/07 | ||
+ | |style="padding:.4em;"|17-08 | ||
+ | |style="padding:.4em;"|DS Bae | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://biorxiv.org/content/early/2016/11/17/088286 Somatic Mutations and Neoepitope Homology in Melanomas Treated with CTLA-4 Blockade.] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-07 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://biorxiv.org/content/early/2016/11/28/090134 Chemotherapy weakly contributes to predicted neoantigen expression in ovarian cancer.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2017/01/31 | ||
+ | |style="padding:.4em;"|17-06 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//www.ncbi.nlm.nih.gov/pubmed/27912059 Microbiota Diurnal Rhythmicity Programs Host Transcriptome Oscillations.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2017/01/24 | ||
+ | |style="padding:.4em;"|17-05 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//www.ncbi.nlm.nih.gov/pubmed/27851914 Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=2|2017/01/17 | ||
+ | |style="padding:.4em;"|17-04 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//www.ncbi.nlm.nih.gov/pubmed/25938943 Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C] | ||
+ | |- | ||
+ | |style="padding:.4em;"|17-03 | ||
+ | |style="padding:.4em;"|EB Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//www.ncbi.nlm.nih.gov/pubmed/27306882 CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2017/01/10 | ||
+ | |style="padding:.4em;"|17-02 | ||
+ | |style="padding:.4em;"|JE Shim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//www.ncbi.nlm.nih.gov/pubmed/26527291 ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2017/01/03 | ||
+ | |style="padding:.4em;"|17-01 | ||
+ | |style="padding:.4em;"|SH Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [//www.ncbi.nlm.nih.gov/pubmed/26287467 Single-cell messenger RNA sequencing reveals rare intestinal cell types] | ||
+ | |- | ||
+ | |} | ||
{|class=wikitable style="text-align:center;" | {|class=wikitable style="text-align:center;" | ||
|+style="text-align:left;font-size:12pt" | 2016 | |+style="text-align:left;font-size:12pt" | 2016 | ||
Line 7: | Line 3,614: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2016/8/22 | + | |style="padding:.4em;" rowspan=1|2016/12/27 |
+ | |style="padding:.4em;"|2016-31 | ||
+ | |style="padding:.4em;"|EB Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/25664528 Decoding the regulatory network of early blood development from single-cell gene expression measurements.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/12/6 | ||
+ | |style="padding:.4em;"|2016-30 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/26299571 Single-Cell RNA-Seq with Waterfall Reveals Molecular Cascades underlying Adult Neurogenesis.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/11/29 | ||
+ | |style="padding:.4em;"|2016-29 | ||
+ | |style="padding:.4em;"|DS Bae | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/24658644 The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/11/22 | ||
+ | |style="padding:.4em;"|2016-28 | ||
+ | |style="padding:.4em;"|CY Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/26887813 Classification of low quality cells from single-cell RNA-seq data.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/11/15 | ||
+ | |style="padding:.4em;"|2016-27 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/26000487 Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/11/8 | ||
+ | |style="padding:.4em;"|2016-26 | ||
+ | |style="padding:.4em;"|JW Cho | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/26000488 Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/11/1 | ||
+ | |style="padding:.4em;"|2016-25 | ||
+ | |style="padding:.4em;"|HJ Han | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/27426982 Causal Mechanistic Regulatory Network for Glioblastoma Deciphered Using Systems Genetics Network Analysis.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/10/25 | ||
+ | |style="padding:.4em;"|2016-24 | ||
+ | |style="padding:.4em;"|MY Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/27549193 Comprehensive analyses of tumor immunity: implications for cancer immunotherapy.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/10/11 | ||
+ | |style="padding:.4em;"|2016-23 | ||
+ | |style="padding:.4em;"|JE Shim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/?term=sidespread+parainflammation Widespread parainflammation in human cancer] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/9/27 | ||
+ | |style="padding:.4em;"|2016-22 | ||
+ | |style="padding:.4em;"|ER Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/27535533 Analysis of protein-coding genetic variation in 60,706 humans] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/9/20 | ||
+ | |style="padding:.4em;"|2016-21 | ||
+ | |style="padding:.4em;"|SM Yang | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | Functional characterization of somatic mutations in cancer using network-based inference of protein activity | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/27322546 pubmed] | ||
+ | [http://www.nature.com/ng/journal/v48/n8/full/ng.3593.html fulltext] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/9/13 | ||
+ | |style="padding:.4em;"|2016-20 | ||
+ | |style="padding:.4em;"|KS Kim | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/?term=exploiting+single-cell+expression+to+characterize Exploiting single-cell expression to characterize co-expression replicability.] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/9/6 | ||
+ | |style="padding:.4em;"|2016-19 | ||
+ | |style="padding:.4em;"|T Lee | ||
+ | |style="padding:.4em;text-align:left"| | ||
+ | [http://www.ncbi.nlm.nih.gov/pubmed/26940869 Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade] | ||
+ | |- | ||
+ | |style="padding:.4em;" rowspan=1|2016/8/31 | ||
|style="padding:.4em;"|2016-18 | |style="padding:.4em;"|2016-18 | ||
|style="padding:.4em;"|DS Bae | |style="padding:.4em;"|DS Bae | ||
Line 13: | Line 3,700: | ||
[http://www.ncbi.nlm.nih.gov/pubmed/27264179 A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors] | [http://www.ncbi.nlm.nih.gov/pubmed/27264179 A Computational Drug Repositioning Approach for Targeting Oncogenic Transcription Factors] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2016/8/ | + | |style="padding:.4em;" rowspan=1|2016/8/16 |
|style="padding:.4em;"|2016-17 | |style="padding:.4em;"|2016-17 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|JW Cho |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [http://www.ncbi.nlm.nih.gov/pubmed/ | + | [http://www.ncbi.nlm.nih.gov/pubmed/27309802 The landscape of accessible chromatin in mammalian preimplantation embryos] |
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2016/8/ | + | |style="padding:.4em;" rowspan=1|2016/8/8 |
|style="padding:.4em;"|2016-16 | |style="padding:.4em;"|2016-16 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|EB Kim |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [http://www.ncbi.nlm.nih.gov/pubmed/ | + | [http://www.ncbi.nlm.nih.gov/pubmed/27064255 Enhancer-promoter interactions are encoded by complex genomic signatures on looping chromatin] |
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2016/ | + | |style="padding:.4em;" rowspan=1|2016/8/1 |
|style="padding:.4em;"|2016-15 | |style="padding:.4em;"|2016-15 | ||
|style="padding:.4em;"|MY Lee | |style="padding:.4em;"|MY Lee | ||
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [http://www.ncbi.nlm.nih.gov/pubmed/ | + | [http://www.ncbi.nlm.nih.gov/pubmed/27040498 Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients] |
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2016/7/ | + | |style="padding:.4em;" rowspan=1|2016/7/25 |
|style="padding:.4em;"|2016-14 | |style="padding:.4em;"|2016-14 | ||
|style="padding:.4em;"|CY Kim | |style="padding:.4em;"|CY Kim | ||
Line 37: | Line 3,724: | ||
[http://www.ncbi.nlm.nih.gov/pubmed/?term=integration+of+summary+data+from+gwas+and+eqtl+studies Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets] | [http://www.ncbi.nlm.nih.gov/pubmed/?term=integration+of+summary+data+from+gwas+and+eqtl+studies Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2016/7/ | + | |style="padding:.4em;" rowspan=1|2016/7/18 |
|style="padding:.4em;"|2016-13 | |style="padding:.4em;"|2016-13 | ||
|style="padding:.4em;"|HJ Han | |style="padding:.4em;"|HJ Han |
Latest revision as of 21:09, 4 November 2024
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2024/06/18 | Single-cell | 24-32 | EB Hong |
Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory |
2024/06/18 | Single-cell | 24-31 | JJ Heo |
scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses |
2024/06/18 | Single-cell | 24-30 | SM Han |
Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution |
2024/06/18 | Single-cell | 24-29 | HJ Choi | |
2024/06/11 | Single-cell | 24-28 | SA Choi | |
2024/06/11 | Single-cell | 24-27 | HJ Cha |
Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics |
2024/06/11 | Single-cell | 24-26 | YK Jung | |
2024/06/11 | Single-cell | 24-25 | HJ Lee | |
2024/06/04 | Single-cell | 24-24 | HK Lee |
Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas |
2024/06/04 | Single-cell | 24-23 | JI Lee |
Multimodal spatiotemporal phenotyping of human retinal organoid development |
2024/06/04 | Single-cell | 24-22 | JH Lee | |
2024/06/04 | Single-cell | 24-21 | JH Lee |
A single-cell analysis of the Arabidopsis vegetative shoot apex |
2024/05/28 | Single-cell | 24-20 | JH Lee |
Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq |
2024/05/28 | Single-cell | 24-19 | YH Lee | |
2024/05/28 | Single-cell | 24-18 | EB Yu | |
2024/05/28 | Single-cell | 24-17 | DY Won |
Spatial metatranscriptomics resolves host–bacteria–fungi interactomes |
2024/05/21 | Single-cell | 24-16 | SG Oh | |
2024/05/21 | Single-cell | 24-15 | SY Park | |
2024/05/21 | Single-cell | 24-14 | HS Moon | |
2024/05/21 | Single-cell | 24-13 | JH Nam |
Spatial cellular architecture predicts prognosis in glioblastoma |
2024/05/14 | Single-cell | 24-12 | HS Na | |
2024/05/14 | Single-cell | 24-11 | PK Kim |
Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity |
2024/05/14 | Single-cell | 24-10 | SH Kwon | |
2024/05/14 | Single-cell | 24-9 | Q Zhen | |
2024/05/07 | Single-cell | 24-8 | CR Leenaars | |
2024/05/07 | Single-cell | 24-7 | YR Kim | |
2024/05/07 | Single-cell | 24-6 | JY Kim |
Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases |
2024/05/07 | Single-cell | 24-5 | WJ Kim |
Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment |
2024/04/23 | Single-cell | 24-4 | G Koh |
Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease |
2024/04/23 | Single-cell | 24-3 | SH Ahn | |
2024/04/23 | Single-cell | 24-2 | EJ Sung | |
2024/04/23 | Single-cell | 24-1 | HJ Kim |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/08/30 | Single-cell | 23-24 | JW Yu | |
2023/08/09 | Single-cell | 23-23 | IS Choi |
Major data analysis errors invalidate cancer microbiome findings |
2023/08/02 | Single-cell | 23-22 | EJ Sung | |
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |