|
|
Line 6: |
Line 6: |
| !scope="col" style="padding:.4em" | Presenter | | !scope="col" style="padding:.4em" | Presenter |
| !scope="col" style="padding:.4em" | Paper title | | !scope="col" style="padding:.4em" | Paper title |
− | |-
| |
− | |style="padding:.4em;" rowspan=2|2015/06/11
| |
− | |style="padding:.4em;"|2015-55
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genome.cshlp.org/content/24/2/340.long Improved exome prioritization of disease genes through cross-species phenotype comparison.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-54
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.sciencedirect.com/science/article/pii/S0002929714001128 Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/06/04
| |
− | |style="padding:.4em;"|2015-53
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nmeth/journal/v10/n11/full/nmeth.2656.html eXtasy: variant prioritization by genomic data fusion.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-52
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genome.cshlp.org/content/21/9/1529.long A probabilistic disease-gene finder for personal genomes.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/05/28
| |
− | |style="padding:.4em;"|2015-51
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/ng/journal/v46/n12/full/ng.3141.html Systematic analysis of noncoding somatic mutations and gene expression alterations across 14 tumor types.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-50
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nbt/journal/v28/n5/full/nbt.1630.html GREAT improves functional interpretation of cis-regulatory regions.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/05/21
| |
− | |style="padding:.4em;"|2015-49
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nmeth/journal/v11/n3/full/nmeth.2832.html Functional annotation of noncoding sequence variants.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-48
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genomebiology.com/content/15/10/480 FunSeq2: A framework for prioritizing noncoding regulatory variants in cancer.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=3|2015/05/14
| |
− | |style="padding:.4em;"|2015-47
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/ncomms/2014/140626/ncomms5212/full/ncomms5212.html Human symptoms-disease network.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-46
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.sciencedirect.com/science/article/pii/S0092867413010246 A nondegenerate code of deleterious variants in Mendelian loci contributes to complex disease risk.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-45
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.sciencemag.org/content/347/6224/1257601.long Disease networks. Uncovering disease-disease relationships through the incomplete interactome.]
| |
− | |-
| |
− | |style="padding:.4em;" rowspan=2|2015/05/07
| |
− | |style="padding:.4em;"|2015-44
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nmeth/journal/v12/n2/full/nmeth.3215.html Selecting causal genes from genome-wide association studies via functionally coherent subnetworks.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-43
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/ncomms/2015/150119/ncomms6890/full/ncomms6890.html Biological interpretation of genome-wide association studies using predicted gene functions.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/04/30
| |
− | |style="padding:.4em;"|2015-42
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genome.cshlp.org/content/25/1/142.long The discovery of integrated gene networks for autism and related disorders.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-41
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://msb.embopress.org/content/10/12/774.long Integrated systems analysis reveals a molecular network underlying autism spectrum disorders.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=3|2015/04/23
| |
− | |style="padding:.4em;"|2015-40
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nature/journal/v518/n7539/full/nature13990.html Dissecting neural differentiation regulatory networks through epigenetic footprinting.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-39
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nature/journal/v518/n7539/full/nature14221.html Cell-of-origin chromatin organization shapes the mutational landscape of cancer.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-38
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nature/journal/v518/n7539/full/nature14248.html Integrative analysis of 111 reference human epigenomes.]
| |
− | |-
| |
− | |style="padding:.4em;" rowspan=2|2015/04/09
| |
− | |style="padding:.4em;"|2015-37
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genome.cshlp.org/content/25/2/246.long Genome-wide analysis of local chromatin packing in Arabidopsis thaliana.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-36
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.sciencedirect.com/science/article/pii/S0092867414014974 A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/04/02
| |
− | |style="padding:.4em;"|2015-35
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nrg/journal/v14/n6/full/nrg3454.html Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-34
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.sciencemag.org/content/347/6225/1010.long Gene regulation. Transcribed enhancers lead waves of coordinated transcription in transitioning mammalian cells.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/03/26
| |
− | |style="padding:.4em;"|2015-33
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genome.cshlp.org/content/25/2/257.long Cupid: simultaneous reconstruction of microRNA-target and ceRNA networks.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-32
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://genome.cshlp.org/content/25/1/41.long Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=2|2015/03/19
| |
− | |style="padding:.4em;"|2015-31
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nbt/journal/vaop/ncurrent/full/nbt.3154.html Decoding the regulatory network of early blood development from single-cell gene expression measurements.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-30
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nrg/journal/v16/n3/full/nrg3833.html Computational and analytical challenges in single-cell transcriptomics.]
| |
− | |
| |
− | |style="padding:.4em;" rowspan=3|2015/03/12
| |
− | |style="padding:.4em;"|2015-29
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.sciencedirect.com/science/article/pii/S0092867415000136 Extensive Strain-Level Copy-Number Variation across Human Gut Microbiome Species.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-28
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nature/journal/v500/n7464/full/nature12506.html Richness of human gut microbiome correlates with metabolic markers.]
| |
− | |-
| |
− | |style="padding:.4em;"|2015-27
| |
− | |style="padding:.4em;"|
| |
− | |style="padding:.4em;text-align:left"|
| |
− | [http://www.nature.com/nature/journal/v490/n7418/full/nature11450.html A metagenome-wide association study of gut microbiota in type 2 diabetes.]
| |
| |- | | |- |
| |style="padding:.4em;" rowspan=3|2015/03/09 | | |style="padding:.4em;" rowspan=3|2015/03/09 |