Difference between revisions of "Journal Club"
Line 8: | Line 8: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/11/02 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-38 | |style="padding:.4em;"|21-38 | ||
Line 15: | Line 15: | ||
[https://www.biorxiv.org/content/10.1101/2021.02.09.430114v2 Single-cell ATAC and RNA sequencing reveal pre-existing and persistent subpopulations of cells associated with relapse of prostate cancer] | [https://www.biorxiv.org/content/10.1101/2021.02.09.430114v2 Single-cell ATAC and RNA sequencing reveal pre-existing and persistent subpopulations of cells associated with relapse of prostate cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/10/26 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-37 | |style="padding:.4em;"|21-37 | ||
Line 22: | Line 22: | ||
[https://www.biorxiv.org/content/10.1101/2021.03.16.435578v1 Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci] | [https://www.biorxiv.org/content/10.1101/2021.03.16.435578v1 Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/10/19 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-36 | |style="padding:.4em;"|21-36 | ||
Line 29: | Line 29: | ||
[https://www.biorxiv.org/content/10.1101/2021.07.28.453784v1 Functional Inference of Gene Regulation using Single-Cell Multi-Omics] | [https://www.biorxiv.org/content/10.1101/2021.07.28.453784v1 Functional Inference of Gene Regulation using Single-Cell Multi-Omics] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/10/12 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-35 | |style="padding:.4em;"|21-35 | ||
Line 36: | Line 36: | ||
[https://www.biorxiv.org/content/10.1101/2021.03.24.436532v1 Single-cell analyses reveal a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer] | [https://www.biorxiv.org/content/10.1101/2021.03.24.436532v1 Single-cell analyses reveal a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/10/05 |
|style="padding:.4em;" rowspan=2|Single-cell | |style="padding:.4em;" rowspan=2|Single-cell | ||
|style="padding:.4em;"|21-34 | |style="padding:.4em;"|21-34 | ||
Line 48: | Line 48: | ||
[https://www.sciencedirect.com/science/article/pii/S1535610821001173 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma] | [https://www.sciencedirect.com/science/article/pii/S1535610821001173 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/09/28 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-32 | |style="padding:.4em;"|21-32 | ||
Line 55: | Line 55: | ||
[https://www.sciencedirect.com/science/article/pii/S1074761321001199 Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells] | [https://www.sciencedirect.com/science/article/pii/S1074761321001199 Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/09/14 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-31 | |style="padding:.4em;"|21-31 | ||
Line 62: | Line 62: | ||
[https://www.nature.com/articles/s41591-021-01232-w Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing] | [https://www.nature.com/articles/s41591-021-01232-w Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/09/07 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-30 | |style="padding:.4em;"|21-30 | ||
Line 69: | Line 69: | ||
[https://www.nature.com/articles/s41591-021-01323-8 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer] | [https://www.nature.com/articles/s41591-021-01323-8 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/08/31 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-29 | |style="padding:.4em;"|21-29 | ||
Line 76: | Line 76: | ||
[https://www.sciencedirect.com/science/article/abs/pii/S0092867420316135 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma] | [https://www.sciencedirect.com/science/article/abs/pii/S0092867420316135 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/08/24 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-28 | |style="padding:.4em;"|21-28 | ||
Line 92: | Line 92: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/06/03 |
|style="padding:.4em;" rowspan=2|- | |style="padding:.4em;" rowspan=2|- | ||
|style="padding:.4em;"|21-27 | |style="padding:.4em;"|21-27 | ||
Line 104: | Line 104: | ||
[https://www.sciencedirect.com/science/article/pii/S1931312821001451 The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition] | [https://www.sciencedirect.com/science/article/pii/S1931312821001451 The infant gut resistome associates with E. coli, environmental exposures, gut microbiome maturity, and asthma-associated bacterial composition] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/05/27 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-25 | |style="padding:.4em;"|21-25 | ||
Line 111: | Line 111: | ||
[https://www.sciencedirect.com/science/article/pii/S1931312820306703?dgcid=rss_sd_all Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation] | [https://www.sciencedirect.com/science/article/pii/S1931312820306703?dgcid=rss_sd_all Methotrexate impacts conserved pathways in diverse human gut bacteria leading to decreased host immune activation] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/05/20 |
|style="padding:.4em;" rowspan=2|- | |style="padding:.4em;" rowspan=2|- | ||
|style="padding:.4em;"|21-24 | |style="padding:.4em;"|21-24 | ||
Line 123: | Line 123: | ||
[https://www.nature.com/articles/s41467-019-10927-1 Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences] | [https://www.nature.com/articles/s41467-019-10927-1 Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/05/13 |
|style="padding:.4em;" rowspan=2|- | |style="padding:.4em;" rowspan=2|- | ||
|style="padding:.4em;"|21-22 | |style="padding:.4em;"|21-22 | ||
Line 135: | Line 135: | ||
[https://www.nature.com/articles/s41591-020-01183-8 Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals] | [https://www.nature.com/articles/s41591-020-01183-8 Microbiome connections with host metabolism and habitual diet from 1,098 deeply phenotyped individuals] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/05/06 |
|style="padding:.4em;" rowspan=2|- | |style="padding:.4em;" rowspan=2|- | ||
|style="padding:.4em;"|21-20 | |style="padding:.4em;"|21-20 | ||
Line 147: | Line 147: | ||
[https://www.nature.com/articles/s41586-019-1237-9 Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases] | [https://www.nature.com/articles/s41586-019-1237-9 Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/04/29 |
|style="padding:.4em;" rowspan=2|- | |style="padding:.4em;" rowspan=2|- | ||
|style="padding:.4em;"|21-18 | |style="padding:.4em;"|21-18 | ||
Line 159: | Line 159: | ||
[https://www.sciencedirect.com/science/article/pii/S1931312820301694 Structure of the Mucosal and Stool Microbiome in Lynch Syndrome] | [https://www.sciencedirect.com/science/article/pii/S1931312820301694 Structure of the Mucosal and Stool Microbiome in Lynch Syndrome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2| | + | |style="padding:.4em;" rowspan=2|2021/04/22 |
|style="padding:.4em;" rowspan=2|- | |style="padding:.4em;" rowspan=2|- | ||
|style="padding:.4em;"|21-16 | |style="padding:.4em;"|21-16 | ||
Line 171: | Line 171: | ||
[https://www.nature.com/articles/s41564-020-00831-6 Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice] | [https://www.nature.com/articles/s41564-020-00831-6 Bifidobacterium bifidum strains synergize with immune checkpoint inhibitors to reduce tumour burden in mice] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/04/15 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-14 | |style="padding:.4em;"|21-14 | ||
Line 178: | Line 178: | ||
[https://www.nature.com/articles/s41591-020-01223-3 The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk] | [https://www.nature.com/articles/s41591-020-01223-3 The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/04/08 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-13 | |style="padding:.4em;"|21-13 | ||
Line 185: | Line 185: | ||
[https://www.nature.com/articles/s41467-019-14177-z Impact of commonly used drugs on the composition and metabolic function of the gut microbiota] | [https://www.nature.com/articles/s41467-019-14177-z Impact of commonly used drugs on the composition and metabolic function of the gut microbiota] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/04/01 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-12 | |style="padding:.4em;"|21-12 | ||
Line 192: | Line 192: | ||
[https://www.sciencedirect.com/science/article/pii/S0092867420305638 Personalized Mapping of Drug Metabolism by the Human Gut Microbiome] | [https://www.sciencedirect.com/science/article/pii/S0092867420305638 Personalized Mapping of Drug Metabolism by the Human Gut Microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/03/25 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-11 | |style="padding:.4em;"|21-11 | ||
Line 199: | Line 199: | ||
[https://www.cell.com/fulltext/S0092-8674(17)30107-1 Mining the Human Gut Microbiota for Immunomodulatory Organisms] | [https://www.cell.com/fulltext/S0092-8674(17)30107-1 Mining the Human Gut Microbiota for Immunomodulatory Organisms] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/03/18 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-10 | |style="padding:.4em;"|21-10 | ||
Line 206: | Line 206: | ||
[https://www.nature.com/articles/s41586-020-2095-1 Microbiome analyses of blood and tissues suggest cancer diagnostic approach] | [https://www.nature.com/articles/s41586-020-2095-1 Microbiome analyses of blood and tissues suggest cancer diagnostic approach] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2021/03/11 |
|style="padding:.4em;" rowspan=1|- | |style="padding:.4em;" rowspan=1|- | ||
|style="padding:.4em;"|21-9 | |style="padding:.4em;"|21-9 |
Revision as of 11:00, 18 August 2021
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/02 | Single-cell | 21-38 | SB Back | |
2021/10/26 | Single-cell | 21-37 | JH Cha | |
2021/10/19 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/12 | Single-cell | 21-35 | IS Choi | |
2021/10/05 | Single-cell | 21-34 | JH Cha | |
21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma | ||
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |