Difference between revisions of "Journal Club"
Line 8: | Line 8: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/30 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-15 | |style="padding:.4em;"|22-15 | ||
Line 15: | Line 15: | ||
[https://www.biorxiv.org/content/10.1101/2022.07.06.499075v1 Maast: genotyping thousands of microbial strains efficiently] | [https://www.biorxiv.org/content/10.1101/2022.07.06.499075v1 Maast: genotyping thousands of microbial strains efficiently] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/30 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-14 | |style="padding:.4em;"|22-14 | ||
Line 22: | Line 22: | ||
[https://www.biorxiv.org/content/10.1101/2022.06.16.496510v2 MIDAS2: Metagenomic Intra-species Diversity Analysis System] | [https://www.biorxiv.org/content/10.1101/2022.06.16.496510v2 MIDAS2: Metagenomic Intra-species Diversity Analysis System] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/30 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-13 | |style="padding:.4em;"|22-13 | ||
Line 29: | Line 29: | ||
[https://www.biorxiv.org/content/10.1101/2022.02.01.478746v2 Scalable microbial strain inference in metagenomic data using StrainFacts] | [https://www.biorxiv.org/content/10.1101/2022.02.01.478746v2 Scalable microbial strain inference in metagenomic data using StrainFacts] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/26 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-12 | |style="padding:.4em;"|22-12 | ||
Line 36: | Line 36: | ||
[https://www.biorxiv.org/content/10.1101/2022.02.15.480535v1 StrainPanDA: linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data] | [https://www.biorxiv.org/content/10.1101/2022.02.15.480535v1 StrainPanDA: linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/26 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-11 | |style="padding:.4em;"|22-11 | ||
Line 43: | Line 43: | ||
[https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01251-w Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation] | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01251-w Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/26 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-10 | |style="padding:.4em;"|22-10 | ||
Line 50: | Line 50: | ||
[https://www.nature.com/articles/s41587-021-01102-3 Fast and accurate metagenotyping of the human gut microbiome with GT-Pro] | [https://www.nature.com/articles/s41587-021-01102-3 Fast and accurate metagenotyping of the human gut microbiome with GT-Pro] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/19 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-9 | |style="padding:.4em;"|22-9 | ||
Line 57: | Line 57: | ||
[https://www.nature.com/articles/s41587-020-00797-0 inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains] | [https://www.nature.com/articles/s41587-020-00797-0 inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/19 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-8 | |style="padding:.4em;"|22-8 | ||
Line 64: | Line 64: | ||
[https://genome.cshlp.org/content/early/2021/07/22/gr.265058.120 Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment] | [https://genome.cshlp.org/content/early/2021/07/22/gr.265058.120 Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/19 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-7 | |style="padding:.4em;"|22-7 | ||
Line 332: | Line 332: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/09/ | + | |style="padding:.4em;" rowspan=1|2022/09/29 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-31 | |style="padding:.4em;"|22-31 | ||
Line 339: | Line 339: | ||
[https://www.nature.com/articles/s41564-022-01121-z Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration] | [https://www.nature.com/articles/s41564-022-01121-z Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/09/ | + | |style="padding:.4em;" rowspan=1|2022/09/22 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-30 | |style="padding:.4em;"|22-30 | ||
Line 346: | Line 346: | ||
[https://www.sciencedirect.com/science/article/pii/S193131282200049X Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans] | [https://www.sciencedirect.com/science/article/pii/S193131282200049X Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/09/ | + | |style="padding:.4em;" rowspan=1|2022/09/15 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-29 | |style="padding:.4em;"|22-29 | ||
Line 353: | Line 353: | ||
[https://www.biorxiv.org/content/10.1101/2021.10.06.463341v2.full SynTracker: a synteny based tool for tracking microbial strains] | [https://www.biorxiv.org/content/10.1101/2021.10.06.463341v2.full SynTracker: a synteny based tool for tracking microbial strains] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/09/ | + | |style="padding:.4em;" rowspan=1|2022/09/08 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-28 | |style="padding:.4em;"|22-28 | ||
Line 360: | Line 360: | ||
[https://www.nature.com/articles/s41586-022-04648-7 Discovery of bioactive microbial gene products in inflammatory bowel disease] | [https://www.nature.com/articles/s41586-022-04648-7 Discovery of bioactive microbial gene products in inflammatory bowel disease] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/ | + | |style="padding:.4em;" rowspan=1|2022/09/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-27 | |style="padding:.4em;"|22-27 | ||
Line 367: | Line 367: | ||
[https://www.nature.com/articles/s41587-022-01226-0 Identification of antimicrobial peptides from the human gut microbiome using deep learning] | [https://www.nature.com/articles/s41587-022-01226-0 Identification of antimicrobial peptides from the human gut microbiome using deep learning] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-26 | |style="padding:.4em;"|22-26 | ||
Line 374: | Line 374: | ||
[https://www.nature.com/articles/s43588-022-00247-8 Large-scale microbiome data integration enables robust biomarker identification] | [https://www.nature.com/articles/s43588-022-00247-8 Large-scale microbiome data integration enables robust biomarker identification] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/18 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-25 | |style="padding:.4em;"|22-25 | ||
Line 381: | Line 381: | ||
[https://www.nature.com/articles/s41467-022-30512-3 Predicting cancer prognosis and drug response from the tumor microbiome] | [https://www.nature.com/articles/s41467-022-30512-3 Predicting cancer prognosis and drug response from the tumor microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/08/ | + | |style="padding:.4em;" rowspan=1|2022/08/11 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-24 | |style="padding:.4em;"|22-24 | ||
Line 388: | Line 388: | ||
[https://www.cell.com/cell-reports/pdf/S2211-1247(22)00770-7.pdf Thousands of small, novel genes predicted in global phage genomes] | [https://www.cell.com/cell-reports/pdf/S2211-1247(22)00770-7.pdf Thousands of small, novel genes predicted in global phage genomes] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/ | + | |style="padding:.4em;" rowspan=1|2022/08/04 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-23 | |style="padding:.4em;"|22-23 | ||
Line 395: | Line 395: | ||
[https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01231-0 MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations] | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01231-0 MetaPop: a pipeline for macro- and microdiversity analyses and visualization of microbial and viral metagenome-derived populations] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/07/ | + | |style="padding:.4em;" rowspan=1|2022/07/28 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-22 | |style="padding:.4em;"|22-22 |
Revision as of 14:56, 19 August 2022
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |