Difference between revisions of "Journal Club"
| Line 1: | Line 1: | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
{|class=wikitable style="text-align:center;"  | {|class=wikitable style="text-align:center;"  | ||
| Line 123: | Line 9: | ||
!scope="col" style="padding:.4em" | Paper title  | !scope="col" style="padding:.4em" | Paper title  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/12/  | + | |style="padding:.4em;" rowspan=1|2022/12/13  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-40  | |style="padding:.4em;"|22-40  | ||
| Line 130: | Line 16: | ||
[https://www.nature.com/articles/s41588-022-01141-9 Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment]  | [https://www.nature.com/articles/s41588-022-01141-9 Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/12/  | + | |style="padding:.4em;" rowspan=1|2022/12/06  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-39  | |style="padding:.4em;"|22-39  | ||
| Line 137: | Line 23: | ||
[https://www.biorxiv.org/content/10.1101/2022.08.05.502989v1 MetaTiME: Meta-components of the Tumor Immune Microenvironment]  | [https://www.biorxiv.org/content/10.1101/2022.08.05.502989v1 MetaTiME: Meta-components of the Tumor Immune Microenvironment]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/  | + | |style="padding:.4em;" rowspan=1|2022/11/29  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-38  | |style="padding:.4em;"|22-38  | ||
| Line 144: | Line 30: | ||
[https://www.nature.com/articles/s41590-022-01262-7 Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy]  | [https://www.nature.com/articles/s41590-022-01262-7 Pre-encoded responsiveness to type I interferon in the peripheral immune system defines outcome of PD1 blockade therapy]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/11/  | + | |style="padding:.4em;" rowspan=1|2022/11/22  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-37  | |style="padding:.4em;"|22-37  | ||
| Line 151: | Line 37: | ||
[https://www.biorxiv.org/content/10.1101/2022.03.16.484513v1 Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating T cells]  | [https://www.biorxiv.org/content/10.1101/2022.03.16.484513v1 Integrated single-cell profiling dissects cell-state-specific enhancer landscapes of human tumor-infiltrating T cells]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/11/  | + | |style="padding:.4em;" rowspan=1|2022/11/15  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-36  | |style="padding:.4em;"|22-36  | ||
| Line 158: | Line 44: | ||
[https://www.nature.com/articles/s41591-022-01799-y A T cell resilience model associated with response to immunotherapy in multiple tumor types]  | [https://www.nature.com/articles/s41591-022-01799-y A T cell resilience model associated with response to immunotherapy in multiple tumor types]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/11/  | + | |style="padding:.4em;" rowspan=1|2022/11/08  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-35  | |style="padding:.4em;"|22-35  | ||
| Line 165: | Line 51: | ||
[https://www.nature.com/articles/s41588-022-01134-8 Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment]  | [https://www.nature.com/articles/s41588-022-01134-8 Single-nucleus and spatial transcriptome profiling of pancreatic cancer identifies multicellular dynamics associated with neoadjuvant treatment]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/11/  | + | |style="padding:.4em;" rowspan=1|2022/11/01  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-34  | |style="padding:.4em;"|22-34  | ||
| Line 172: | Line 58: | ||
[https://pubmed.ncbi.nlm.nih.gov/35649411/ Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases]  | [https://pubmed.ncbi.nlm.nih.gov/35649411/ Cross-tissue, single-cell stromal atlas identifies shared pathological fibroblast phenotypes in four chronic inflammatory diseases]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/10/  | + | |style="padding:.4em;" rowspan=1|2022/10/25  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-33  | |style="padding:.4em;"|22-33  | ||
| Line 179: | Line 65: | ||
[https://www.sciencedirect.com/science/article/pii/S1535610822003178 Pan-cancer integrative histology-genomic analysis via multimodal deep learning]  | [https://www.sciencedirect.com/science/article/pii/S1535610822003178 Pan-cancer integrative histology-genomic analysis via multimodal deep learning]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/10/  | + | |style="padding:.4em;" rowspan=1|2022/10/18  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-32  | |style="padding:.4em;"|22-32  | ||
| Line 186: | Line 72: | ||
[https://pubmed.ncbi.nlm.nih.gov/35803260/ Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy]  | [https://pubmed.ncbi.nlm.nih.gov/35803260/ Tissue-resident memory and circulating T cells are early responders to pre-surgical cancer immunotherapy]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/10/  | + | |style="padding:.4em;" rowspan=1|2022/10/11  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-31  | |style="padding:.4em;"|22-31  | ||
| Line 193: | Line 79: | ||
[https://www.biorxiv.org/content/10.1101/2022.05.04.490536v1 Modeling fragment counts improves single-cell ATAC-seq analysis]  | [https://www.biorxiv.org/content/10.1101/2022.05.04.490536v1 Modeling fragment counts improves single-cell ATAC-seq analysis]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/10/  | + | |style="padding:.4em;" rowspan=1|2022/10/04  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-30  | |style="padding:.4em;"|22-30  | ||
| Line 200: | Line 86: | ||
[https://www.nature.com/articles/s41467-022-31535-6 Network-based machine learning approach to predict immunotherapy response in cancer patients]  | [https://www.nature.com/articles/s41467-022-31535-6 Network-based machine learning approach to predict immunotherapy response in cancer patients]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/27  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-29  | |style="padding:.4em;"|22-29  | ||
| Line 207: | Line 93: | ||
[https://www.biorxiv.org/content/10.1101/2022.08.19.504505v1 SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks]  | [https://www.biorxiv.org/content/10.1101/2022.08.19.504505v1 SCENIC+: single-cell multiomic inference of enhancers and gene regulatory networks]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/20  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-28  | |style="padding:.4em;"|22-28  | ||
| Line 214: | Line 100: | ||
[https://www.nature.com/articles/s41586-022-04718-w Extricating human tumour immune alterations from tissue inflammation]  | [https://www.nature.com/articles/s41586-022-04718-w Extricating human tumour immune alterations from tissue inflammation]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/13  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-25  | |style="padding:.4em;"|22-25  | ||
| Line 221: | Line 107: | ||
[https://www.biorxiv.org/content/10.1101/2022.06.15.495325v1 T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies]  | [https://www.biorxiv.org/content/10.1101/2022.06.15.495325v1 T cell receptor convergence is an indicator of antigen-specific T cell response in cancer immunotherapies]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/06  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|22-26  | |style="padding:.4em;"|22-26  | ||
| Line 416: | Line 302: | ||
!scope="col" style="padding:.4em" | Paper title  | !scope="col" style="padding:.4em" | Paper title  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/11/15  | 
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-39  | ||
| + | |style="padding:.4em;"|NY Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.nature.com/articles/s41564-022-01157-1 Phage–host coevolution in natural populations]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/11/08  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-38  | ||
| + | |style="padding:.4em;"|SH Lee  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.nature.com/articles/s41467-022-29968-0 A randomized controlled trial for response of microbiome network to exercise and diet intervention in patients with nonalcoholic fatty liver disease]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/11/01  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-37  | ||
| + | |style="padding:.4em;"|SH Ahn  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.05.19.492684v1 Scalable power analysis and effect size exploration of microbiome community differences with Evident]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/11/01  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-36  | ||
| + | |style="padding:.4em;"|HJ Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.08.05.502982v1 Phanta: Phage-inclusive profiling of human gut metagenomes]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/10/25  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-35  | ||
| + | |style="padding:.4em;"|JH Cha  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010373 Computational approach to modeling microbiome landscapes associated with chronic human disease progression]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/10/18  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-34  | ||
| + | |style="padding:.4em;"|JY Ma  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.08.02.502504v1 A novel in silico method employs chemical and protein similarity algorithms to accurately identify chemical transformations in the human gut microbiome]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/10/11  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-33  | ||
| + | |style="padding:.4em;"|NY Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2021.09.13.460160v3 Inference of disease-associated microbial biomarkers based on metagenomic and metatranscriptomic data]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/10/04  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-32  | ||
| + | |style="padding:.4em;"|SH Lee  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.sciencedirect.com/science/article/pii/S0092867422009199?via%3Dihub Personalized microbiome-driven effects of non-nutritive sweeteners on human glucose tolerance]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/09/27  | ||
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|22-31  | |style="padding:.4em;"|22-31  | ||
| Line 423: | Line 365: | ||
[https://www.nature.com/articles/s41564-022-01121-z Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration]  | [https://www.nature.com/articles/s41564-022-01121-z Identification of shared and disease-specific host gene–microbiome associations across human diseases using multi-omic integration]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/20  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|22-30  | |style="padding:.4em;"|22-30  | ||
| Line 430: | Line 372: | ||
[https://www.sciencedirect.com/science/article/pii/S193131282200049X Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans]  | [https://www.sciencedirect.com/science/article/pii/S193131282200049X Caudovirales bacteriophages are associated with improved executive function and memory in flies, mice, and humans]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/13  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|22-29  | |style="padding:.4em;"|22-29  | ||
| Line 437: | Line 379: | ||
[https://www.biorxiv.org/content/10.1101/2021.10.06.463341v2.full SynTracker: a synteny based tool for tracking microbial strains]  | [https://www.biorxiv.org/content/10.1101/2021.10.06.463341v2.full SynTracker: a synteny based tool for tracking microbial strains]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2022/09/  | + | |style="padding:.4em;" rowspan=1|2022/09/06  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| − | |style="padding:.4em;"|22-  | + | |style="padding:.4em;"|22-28  | 
|style="padding:.4em;"|JY Ma  | |style="padding:.4em;"|JY Ma  | ||
|style="padding:.4em;text-align:left"|  | |style="padding:.4em;text-align:left"|  | ||
| Line 446: | Line 388: | ||
|style="padding:.4em;" rowspan=1|2022/09/01  | |style="padding:.4em;" rowspan=1|2022/09/01  | ||
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| − | |style="padding:.4em;"|22-  | + | |style="padding:.4em;"|22-27  | 
|style="padding:.4em;"|NY Kim  | |style="padding:.4em;"|NY Kim  | ||
|style="padding:.4em;text-align:left"|  | |style="padding:.4em;text-align:left"|  | ||
| Line 635: | Line 577: | ||
|}  | |}  | ||
| + | |||
| + | {|class=wikitable style="text-align:center;"  | ||
| + | |+style="text-align:left;font-size:12pt" | 2022 Microbiome Special JC  | ||
| + | |-  | ||
| + | !scope="col" style="padding:.4em" | Date  | ||
| + | !scope="col" style="padding:.4em" | Team  | ||
| + | !scope="col" style="padding:.4em" | Paper<br/>index  | ||
| + | !scope="col" style="padding:.4em" | Presenter  | ||
| + | !scope="col" style="padding:.4em" | Paper title  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/30  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-15  | ||
| + | |style="padding:.4em;"|HY Kang  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.07.06.499075v1 Maast: genotyping thousands of microbial strains efficiently]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/30  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-14  | ||
| + | |style="padding:.4em;"|YJ Roh  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.06.16.496510v2 MIDAS2: Metagenomic Intra-species Diversity Analysis System]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/30  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-13  | ||
| + | |style="padding:.4em;"|SC Yang  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.02.01.478746v2 Scalable microbial strain inference in metagenomic data using StrainFacts]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/26  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-12  | ||
| + | |style="padding:.4em;"|SH Ahn  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.biorxiv.org/content/10.1101/2022.02.15.480535v1 StrainPanDA: linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/26  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-11  | ||
| + | |style="padding:.4em;"|HJ Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01251-w Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/26  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-10  | ||
| + | |style="padding:.4em;"|JY Ma  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.nature.com/articles/s41587-021-01102-3 Fast and accurate metagenotyping of the human gut microbiome with GT-Pro]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/19  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-9  | ||
| + | |style="padding:.4em;"|JH Cha  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.nature.com/articles/s41587-020-00797-0 inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/19  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-8  | ||
| + | |style="padding:.4em;"|NY Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://genome.cshlp.org/content/early/2021/07/22/gr.265058.120 Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/19  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-7  | ||
| + | |style="padding:.4em;"|SH Lee  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.sciencedirect.com/science/article/pii/S1931312821002365 Dispersal strategies shape persistence and evolution of human gut bacteria]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/09  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-6  | ||
| + | |style="padding:.4em;"|SH Ahn  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.sciencedirect.com/science/article/pii/S0092867421003524 The long-term genetic stability and individual specificity of the human gut microbiome]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/09  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-5  | ||
| + | |style="padding:.4em;"|HJ Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02042-y Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/08/09  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-4  | ||
| + | |style="padding:.4em;"|JY Ma  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000102 Evolutionary dynamics of bacteria in the gut microbiome within and across hosts]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/07/29  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-3  | ||
| + | |style="padding:.4em;"|JH Cha  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://elifesciences.org/articles/42693 Extensive transmission of microbes along the gastrointestinal tract]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/07/29  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-2  | ||
| + | |style="padding:.4em;"|NY Kim  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(19)30041-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312819300411%3Fshowall%3Dtrue Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets]  | ||
| + | |-  | ||
| + | |style="padding:.4em;" rowspan=1|2022/07/29  | ||
| + | |style="padding:.4em;" rowspan=1|Microbiome  | ||
| + | |style="padding:.4em;"|22-1  | ||
| + | |style="padding:.4em;"|SH Lee  | ||
| + | |style="padding:.4em;text-align:left"|  | ||
| + | [https://www.nature.com/articles/nmeth.3802 Strain-level microbial epidemiology and population genomics from shotgun metagenomics]  | ||
| + | |}  | ||
Revision as of 11:05, 7 September 2022
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/11/23 | Single-cell | 21-39 | IS Choi | |
| 2021/11/16 | Single-cell | 21-38 | SB Back | |
| 2021/11/09 | Single-cell | 21-37 | JH Cha | |
| 2021/11/02 | Single-cell | 21-36 | SB Baek | 
 Functional Inference of Gene Regulation using Single-Cell Multi-Omics  | 
| 2021/10/26 | Single-cell | 21-35 | IS Choi | |
| 2021/10/19 | Single-cell | 21-34 | JH Cha | |
| 2021/10/05 | Single-cell | 21-33 | JH Cha | 
 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma  | 
| 2021/09/28 | Single-cell | 21-32 | SB Baek | |
| 2021/09/14 | Single-cell | 21-31 | IS Choi | |
| 2021/09/07 | Single-cell | 21-30 | JH Cha | 
 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer  | 
| 2021/08/31 | Single-cell | 21-29 | IS Choi | 
 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma  | 
| 2021/08/24 | Single-cell | 21-28 | SB Baek | 
 Interpreting type 1 diabetes risk with genetics and single-cell epigenomics  | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/02/22 | Single-cell | 21-8 | IS Choi | 
 Functional CRISPR dissection of gene networks controlling human regulatory T cell identity  | 
| 21-7 | JH Cha | 
 Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy  | ||
| 2021/02/15 | Single-cell | 21-6 | SB Baek | |
| 21-5 | IS Choi | 
 Trajectory-based differential expression analysis for single-cell sequencing data  | ||
| 2021/02/08 | Single-cell | 21-4 | SB Baek | 
 Genetic determinants of co-accessible chromatin regions in activated T cells across humans  | 
| 21-3 | JH Cha | 
 Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer  | ||
| 2021/02/01 | Single-cell | 21-2 | JW Cho | |
| 21-1 | JW Cho |