Difference between revisions of "Journal Club"
| Line 9: | Line 9: | ||
!scope="col" style="padding:.4em" | Paper title  | !scope="col" style="padding:.4em" | Paper title  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/06/  | + | |style="padding:.4em;" rowspan=1|2023/06/14  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-21  | |style="padding:.4em;"|23-21  | ||
| Line 16: | Line 16: | ||
[https://doi.org/10.1038/s43018-022-00433-7 Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade]  | [https://doi.org/10.1038/s43018-022-00433-7 Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/06/07  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-20  | |style="padding:.4em;"|23-20  | ||
| Line 23: | Line 23: | ||
[https://doi.org/10.1038/s41587-022-01342-x Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression]  | [https://doi.org/10.1038/s41587-022-01342-x Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/05/  | + | |style="padding:.4em;" rowspan=1|2023/05/31  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-19  | |style="padding:.4em;"|23-19  | ||
| Line 30: | Line 30: | ||
[https://doi.org/10.1038/s41587-022-01288-0 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data]  | [https://doi.org/10.1038/s41587-022-01288-0 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/05/  | + | |style="padding:.4em;" rowspan=1|2023/05/24  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-18  | |style="padding:.4em;"|23-18  | ||
| Line 37: | Line 37: | ||
[https://doi.org/10.1016/j.xgen.2022.100166 Functional inference of gene regulation using single-cell multi-omics]  | [https://doi.org/10.1016/j.xgen.2022.100166 Functional inference of gene regulation using single-cell multi-omics]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/05/  | + | |style="padding:.4em;" rowspan=1|2023/05/17  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-17  | |style="padding:.4em;"|23-17  | ||
| Line 44: | Line 44: | ||
[https://doi.org/10.1016/j.patter.2022.100651 Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships]  | [https://doi.org/10.1016/j.patter.2022.100651 Self-supervised graph representation learning integrates multiple molecular networks and decodes gene-disease relationships]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/05/  | + | |style="padding:.4em;" rowspan=1|2023/05/10  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-16  | |style="padding:.4em;"|23-16  | ||
| Line 51: | Line 51: | ||
[https://doi.org/10.1016/j.ccell.2022.10.008 High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer]  | [https://doi.org/10.1016/j.ccell.2022.10.008 High-resolution single-cell atlas reveals diversity and plasticity of tissue-resident neutrophils in non-small cell lung cancer]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/05/03  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-15  | |style="padding:.4em;"|23-15  | ||
| Line 58: | Line 58: | ||
[https://doi.org/10.1186/s13059-022-02828-2 Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment]  | [https://doi.org/10.1186/s13059-022-02828-2 Parallel single-cell and bulk transcriptome analyses reveal key features of the gastric tumor microenvironment]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/04/  | + | |style="padding:.4em;" rowspan=1|2023/04/26  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-14  | |style="padding:.4em;"|23-14  | ||
| Line 65: | Line 65: | ||
[https://doi.org/10.1038/s41467-022-32838-4 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma]  | [https://doi.org/10.1038/s41467-022-32838-4 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/04/  | + | |style="padding:.4em;" rowspan=1|2023/04/19  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-13  | |style="padding:.4em;"|23-13  | ||
| Line 72: | Line 72: | ||
[https://doi.org/10.1038/s43018-021-00292-8 Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer]  | [https://doi.org/10.1038/s43018-021-00292-8 Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/04/  | + | |style="padding:.4em;" rowspan=1|2023/04/12  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-12  | |style="padding:.4em;"|23-12  | ||
| Line 79: | Line 79: | ||
[https://doi.org/10.1016/j.cell.2022.11.028 Integrative single-cell analysis of cardiogenesis indentifies developmental trajectories and non-conding mutations in congenital heart disease]  | [https://doi.org/10.1016/j.cell.2022.11.028 Integrative single-cell analysis of cardiogenesis indentifies developmental trajectories and non-conding mutations in congenital heart disease]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/04/05  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-11  | |style="padding:.4em;"|23-11  | ||
| Line 86: | Line 86: | ||
[https://doi.org/10.1101/2022.12.20.521311 Supervised discovery of interpretable gene programs from single-cell data]  | [https://doi.org/10.1101/2022.12.20.521311 Supervised discovery of interpretable gene programs from single-cell data]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/03/  | + | |style="padding:.4em;" rowspan=1|2023/03/29  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-10  | |style="padding:.4em;"|23-10  | ||
| Line 93: | Line 93: | ||
[https://doi.org/10.1038/s41586-022-05435-0 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer]  | [https://doi.org/10.1038/s41586-022-05435-0 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/03/  | + | |style="padding:.4em;" rowspan=1|2023/03/22  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-9  | |style="padding:.4em;"|23-9  | ||
| Line 100: | Line 100: | ||
[https://www.nature.com/articles/s41588-022-01141-9 Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment]  | [https://www.nature.com/articles/s41588-022-01141-9 Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/03/  | + | |style="padding:.4em;" rowspan=1|2023/03/15  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-8  | |style="padding:.4em;"|23-8  | ||
| Line 107: | Line 107: | ||
[https://www.biorxiv.org/content/10.1101/2022.08.05.502989v1 MetaTiME: Meta-components of the Tumor Immune Microenvironment]  | [https://www.biorxiv.org/content/10.1101/2022.08.05.502989v1 MetaTiME: Meta-components of the Tumor Immune Microenvironment]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/03/08  | 
|style="padding:.4em;" rowspan=1|Single-cell  | |style="padding:.4em;" rowspan=1|Single-cell  | ||
|style="padding:.4em;"|23-7  | |style="padding:.4em;"|23-7  | ||
Revision as of 11:16, 27 February 2023
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2023/06/14 | Single-cell | 23-21 | G Koh | |
| 2023/06/07 | Single-cell | 23-20 | JW Yu | 
 Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression  | 
| 2023/05/31 | Single-cell | 23-19 | JH Cha | 
 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data  | 
| 2023/05/24 | Single-cell | 23-18 | SB Baek | 
 Functional inference of gene regulation using single-cell multi-omics  | 
| 2023/05/17 | Single-cell | 23-17 | EJ Sung | |
| 2023/05/10 | Single-cell | 23-16 | IS Choi | |
| 2023/05/03 | Single-cell | 23-15 | G Koh | |
| 2023/04/26 | Single-cell | 23-14 | JW Yu | 
 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma  | 
| 2023/04/19 | Single-cell | 23-13 | JH Cha | |
| 2023/04/12 | Single-cell | 23-12 | SB Baek | |
| 2023/04/05 | Single-cell | 23-11 | EJ Sung | 
 Supervised discovery of interpretable gene programs from single-cell data  | 
| 2023/03/29 | Single-cell | 23-10 | IS Choi | 
 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer  | 
| 2023/03/22 | Single-cell | 23-9 | G Koh | |
| 2023/03/15 | Single-cell | 23-8 | JW Yu | 
 MetaTiME: Meta-components of the Tumor Immune Microenvironment  | 
| 2023/03/08 | Single-cell | 23-7 | JH Cha | |
| 2023/02/21 | Single-cell | 23-6 | SB Baek | |
| 2023/02/14 | Single-cell | 23-5 | EJ Sung | 
 A T cell resilience model associated with response to immunotherapy in multiple tumor types  | 
| 2022/01/31 | Single-cell | 23-4 | IS Choi | |
| 2023/01/25 | Single-cell | 23-3 | G Koh | |
| 2023/01/17 | Single-cell | 23-2 | JW Yu | 
 Pan-cancer integrative histology-genomic analysis via multimodal deep learning  | 
| 2023/01/11 | Single-cell | 23-1 | JH Cha | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/11/23 | Single-cell | 21-39 | IS Choi | |
| 2021/11/16 | Single-cell | 21-38 | SB Back | |
| 2021/11/09 | Single-cell | 21-37 | JH Cha | |
| 2021/11/02 | Single-cell | 21-36 | SB Baek | 
 Functional Inference of Gene Regulation using Single-Cell Multi-Omics  | 
| 2021/10/26 | Single-cell | 21-35 | IS Choi | |
| 2021/10/19 | Single-cell | 21-34 | JH Cha | |
| 2021/10/05 | Single-cell | 21-33 | JH Cha | 
 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma  | 
| 2021/09/28 | Single-cell | 21-32 | SB Baek | |
| 2021/09/14 | Single-cell | 21-31 | IS Choi | |
| 2021/09/07 | Single-cell | 21-30 | JH Cha | 
 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer  | 
| 2021/08/31 | Single-cell | 21-29 | IS Choi | 
 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma  | 
| 2021/08/24 | Single-cell | 21-28 | SB Baek | 
 Interpreting type 1 diabetes risk with genetics and single-cell epigenomics  | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/02/22 | Single-cell | 21-8 | IS Choi | 
 Functional CRISPR dissection of gene networks controlling human regulatory T cell identity  | 
| 21-7 | JH Cha | 
 Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy  | ||
| 2021/02/15 | Single-cell | 21-6 | SB Baek | |
| 21-5 | IS Choi | 
 Trajectory-based differential expression analysis for single-cell sequencing data  | ||
| 2021/02/08 | Single-cell | 21-4 | SB Baek | 
 Genetic determinants of co-accessible chromatin regions in activated T cells across humans  | 
| 21-3 | JH Cha | 
 Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer  | ||
| 2021/02/01 | Single-cell | 21-2 | JW Cho | |
| 21-1 | JW Cho |