Difference between revisions of "Journal Club"
| Line 168: | Line 168: | ||
!scope="col" style="padding:.4em" | Paper title  | !scope="col" style="padding:.4em" | Paper title  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/06/09  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-19  | |style="padding:.4em;"|23-19  | ||
| Line 175: | Line 175: | ||
[https://doi.org/10.1016/j.chom.2020.03.005 Structure of the Mucosal and Stool Microbiome in Lynch Syndrome]  | [https://doi.org/10.1016/j.chom.2020.03.005 Structure of the Mucosal and Stool Microbiome in Lynch Syndrome]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/006/02  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-18  | |style="padding:.4em;"|23-18  | ||
| Line 182: | Line 182: | ||
[https://doi.org/10.1038/s41586-019-1237-9 Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases]  | [https://doi.org/10.1038/s41586-019-1237-9 Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/05/  | + | |style="padding:.4em;" rowspan=1|2023/05/26  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-17  | |style="padding:.4em;"|23-17  | ||
| Line 189: | Line 189: | ||
[https://doi.org/10.1016/j.jare.2022.03.007 Roles of oral microbiota and oral-gut microbial transmission in hypertension]  | [https://doi.org/10.1016/j.jare.2022.03.007 Roles of oral microbiota and oral-gut microbial transmission in hypertension]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/05/  | + | |style="padding:.4em;" rowspan=1|2023/05/19  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-16  | |style="padding:.4em;"|23-16  | ||
| Line 196: | Line 196: | ||
[https://doi.org/10.1038/s41467-022-33397-4 Deciphering microbial gene function using natural language processing]  | [https://doi.org/10.1038/s41467-022-33397-4 Deciphering microbial gene function using natural language processing]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/05/12  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-15  | |style="padding:.4em;"|23-15  | ||
| Line 203: | Line 203: | ||
[https://doi.org/10.1186/s40168-022-01435-4 Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi‑omic analyses]  | [https://doi.org/10.1186/s40168-022-01435-4 Alterations of oral microbiota and impact on the gut microbiome in type 1 diabetes mellitus revealed by integrated multi‑omic analyses]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/04/  | + | |style="padding:.4em;" rowspan=1|2023/04/28  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-14  | |style="padding:.4em;"|23-14  | ||
| Line 210: | Line 210: | ||
[https://doi.org/10.1016/j.immuni.2022.08.016 The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn’s disease]  | [https://doi.org/10.1016/j.immuni.2022.08.016 The CD4+ T cell response to a commensal-derived epitope transitions from a tolerant to an inflammatory state in Crohn’s disease]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/04/  | + | |style="padding:.4em;" rowspan=1|2023/04/21  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-13  | |style="padding:.4em;"|23-13  | ||
| Line 217: | Line 217: | ||
[https://doi.org/10.1038/s41591-018-0203-7 Antigen discovery and specification of immunodominance hierarchies for MHCIIrestricted epitopes]  | [https://doi.org/10.1038/s41591-018-0203-7 Antigen discovery and specification of immunodominance hierarchies for MHCIIrestricted epitopes]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/04/  | + | |style="padding:.4em;" rowspan=1|2023/04/14  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-12  | |style="padding:.4em;"|23-12  | ||
| Line 224: | Line 224: | ||
[https://doi.org/10.1101/2022.10.11.511790 Single Cell Transcriptomics Reveals the Hidden Microbiomes of Human Tissues]  | [https://doi.org/10.1101/2022.10.11.511790 Single Cell Transcriptomics Reveals the Hidden Microbiomes of Human Tissues]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/04/07  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-11  | |style="padding:.4em;"|23-11  | ||
| Line 231: | Line 231: | ||
[https://doi.org/10.1038/s41564-017-0096-0 Stability of the human faecal microbiome in a cohort of adult men]  | [https://doi.org/10.1038/s41564-017-0096-0 Stability of the human faecal microbiome in a cohort of adult men]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/03/  | + | |style="padding:.4em;" rowspan=1|2023/03/31  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-10  | |style="padding:.4em;"|23-10  | ||
| Line 238: | Line 238: | ||
[https://doi.org/10.1038/s41564-017-0084-4 Metatranscriptome of human faecal microbial communities in a cohort of adult men]  | [https://doi.org/10.1038/s41564-017-0084-4 Metatranscriptome of human faecal microbial communities in a cohort of adult men]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/03/  | + | |style="padding:.4em;" rowspan=1|2023/03/24  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-9  | |style="padding:.4em;"|23-9  | ||
| Line 245: | Line 245: | ||
[https://doi.org/10.1016/j.ccell.2022.09.009 Tumor microbiome links cellular programs and immunity in pancreatic cancer]  | [https://doi.org/10.1016/j.ccell.2022.09.009 Tumor microbiome links cellular programs and immunity in pancreatic cancer]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/03/  | + | |style="padding:.4em;" rowspan=1|2023/03/17  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-8  | |style="padding:.4em;"|23-8  | ||
| Line 252: | Line 252: | ||
[https://doi.org/10.1038/s41467-022-32832-w Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort]  | [https://doi.org/10.1038/s41467-022-32832-w Extensive gut virome variation and its associations with host and environmental factors in a population-level cohort]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2023/  | + | |style="padding:.4em;" rowspan=1|2023/03/10  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|23-7  | |style="padding:.4em;"|23-7  | ||
Revision as of 11:19, 27 February 2023
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2023/06/14 | Single-cell | 23-21 | G Koh | |
| 2023/06/07 | Single-cell | 23-20 | JW Yu | 
 Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression  | 
| 2023/05/31 | Single-cell | 23-19 | JH Cha | 
 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data  | 
| 2023/05/24 | Single-cell | 23-18 | SB Baek | 
 Functional inference of gene regulation using single-cell multi-omics  | 
| 2023/05/17 | Single-cell | 23-17 | EJ Sung | |
| 2023/05/10 | Single-cell | 23-16 | IS Choi | |
| 2023/05/03 | Single-cell | 23-15 | G Koh | |
| 2023/04/26 | Single-cell | 23-14 | JW Yu | 
 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma  | 
| 2023/04/19 | Single-cell | 23-13 | JH Cha | |
| 2023/04/12 | Single-cell | 23-12 | SB Baek | |
| 2023/04/05 | Single-cell | 23-11 | EJ Sung | 
 Supervised discovery of interpretable gene programs from single-cell data  | 
| 2023/03/29 | Single-cell | 23-10 | IS Choi | 
 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer  | 
| 2023/03/22 | Single-cell | 23-9 | G Koh | |
| 2023/03/15 | Single-cell | 23-8 | JW Yu | 
 MetaTiME: Meta-components of the Tumor Immune Microenvironment  | 
| 2023/03/08 | Single-cell | 23-7 | JH Cha | |
| 2023/02/21 | Single-cell | 23-6 | SB Baek | |
| 2023/02/14 | Single-cell | 23-5 | EJ Sung | 
 A T cell resilience model associated with response to immunotherapy in multiple tumor types  | 
| 2022/01/31 | Single-cell | 23-4 | IS Choi | |
| 2023/01/25 | Single-cell | 23-3 | G Koh | |
| 2023/01/17 | Single-cell | 23-2 | JW Yu | 
 Pan-cancer integrative histology-genomic analysis via multimodal deep learning  | 
| 2023/01/11 | Single-cell | 23-1 | JH Cha | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/11/23 | Single-cell | 21-39 | IS Choi | |
| 2021/11/16 | Single-cell | 21-38 | SB Back | |
| 2021/11/09 | Single-cell | 21-37 | JH Cha | |
| 2021/11/02 | Single-cell | 21-36 | SB Baek | 
 Functional Inference of Gene Regulation using Single-Cell Multi-Omics  | 
| 2021/10/26 | Single-cell | 21-35 | IS Choi | |
| 2021/10/19 | Single-cell | 21-34 | JH Cha | |
| 2021/10/05 | Single-cell | 21-33 | JH Cha | 
 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma  | 
| 2021/09/28 | Single-cell | 21-32 | SB Baek | |
| 2021/09/14 | Single-cell | 21-31 | IS Choi | |
| 2021/09/07 | Single-cell | 21-30 | JH Cha | 
 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer  | 
| 2021/08/31 | Single-cell | 21-29 | IS Choi | 
 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma  | 
| 2021/08/24 | Single-cell | 21-28 | SB Baek | 
 Interpreting type 1 diabetes risk with genetics and single-cell epigenomics  | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/02/22 | Single-cell | 21-8 | IS Choi | 
 Functional CRISPR dissection of gene networks controlling human regulatory T cell identity  | 
| 21-7 | JH Cha | 
 Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy  | ||
| 2021/02/15 | Single-cell | 21-6 | SB Baek | |
| 21-5 | IS Choi | 
 Trajectory-based differential expression analysis for single-cell sequencing data  | ||
| 2021/02/08 | Single-cell | 21-4 | SB Baek | 
 Genetic determinants of co-accessible chromatin regions in activated T cells across humans  | 
| 21-3 | JH Cha | 
 Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer  | ||
| 2021/02/01 | Single-cell | 21-2 | JW Cho | |
| 21-1 | JW Cho |