Difference between revisions of "Journal Club"
Line 348: | Line 348: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/29 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-29 | |style="padding:.4em;"|23-29 | ||
Line 355: | Line 355: | ||
[https://doi.org/10.1038/s41564-023-01370-6 Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan] | [https://doi.org/10.1038/s41564-023-01370-6 Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/22 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-28 | |style="padding:.4em;"|23-28 | ||
Line 362: | Line 362: | ||
[https://doi.org/10.1016/j.chom.2023.01.003 Longitudinal comparison of the developing gut virome in infants and their mothers] | [https://doi.org/10.1016/j.chom.2023.01.003 Longitudinal comparison of the developing gut virome in infants and their mothers] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/15 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-27 | |style="padding:.4em;"|23-27 | ||
Line 369: | Line 369: | ||
[https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | [https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/08 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-26 | |style="padding:.4em;"|23-26 | ||
Line 376: | Line 376: | ||
[https://doi.org/10.1186/s13059-023-02902-3 PhyloMed: a phylogeny-based test of mediation effect in microbiome] | [https://doi.org/10.1186/s13059-023-02902-3 PhyloMed: a phylogeny-based test of mediation effect in microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/09/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-25 | |style="padding:.4em;"|23-25 | ||
Line 383: | Line 383: | ||
[https://doi.org/10.1101/2023.01.03.519475 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | [https://doi.org/10.1101/2023.01.03.519475 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/08/ | + | |style="padding:.4em;" rowspan=1|2023/08/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-24 | |style="padding:.4em;"|23-24 | ||
Line 390: | Line 390: | ||
[https://doi.org/10.1186/s40168-023-01564-4 Skin microbiome diferentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons] | [https://doi.org/10.1186/s40168-023-01564-4 Skin microbiome diferentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/08/ | + | |style="padding:.4em;" rowspan=1|2023/08/18 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-23 | |style="padding:.4em;"|23-23 | ||
Line 397: | Line 397: | ||
[https://doi.org/10.1016/j.cell.2023.03.011 Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment] | [https://doi.org/10.1016/j.cell.2023.03.011 Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/08/ | + | |style="padding:.4em;" rowspan=1|2023/08/11 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-22 | |style="padding:.4em;"|23-22 | ||
Line 404: | Line 404: | ||
[https://doi.org/10.1016/j.xcrm.2023.100920 Enrichment of oral-derived bacteria in inflamed colorectal tumors and distinct associations of Fusobacterium in the mesenchymal subtype] | [https://doi.org/10.1016/j.xcrm.2023.100920 Enrichment of oral-derived bacteria in inflamed colorectal tumors and distinct associations of Fusobacterium in the mesenchymal subtype] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/08/04 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-21 | |style="padding:.4em;"|23-21 | ||
Line 411: | Line 411: | ||
[https://doi.org/10.1101/2023.03.05.531206 You can move, but you can’t hide: identification of mobile genetic elements with geNomad] | [https://doi.org/10.1101/2023.03.05.531206 You can move, but you can’t hide: identification of mobile genetic elements with geNomad] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/07/ | + | |style="padding:.4em;" rowspan=1|2023/07/28 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-20 | |style="padding:.4em;"|23-20 |
Revision as of 11:59, 21 July 2023
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |