Difference between revisions of "Journal Club"
Line 189: | Line 189: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/07 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-33 | |style="padding:.4em;"|23-33 | ||
Line 196: | Line 196: | ||
[https://doi.org/10.1038/s41588-022-01273-y MHC II immunogenicity shapes the neoepitope landscape in human tumors] | [https://doi.org/10.1038/s41588-022-01273-y MHC II immunogenicity shapes the neoepitope landscape in human tumors] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/31 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-32 | |style="padding:.4em;"|23-32 | ||
Line 203: | Line 203: | ||
[https://doi.org/10.1038/s41586-023-06130-4 Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours] | [https://doi.org/10.1038/s41586-023-06130-4 Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/24 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-31 | |style="padding:.4em;"|23-31 | ||
Line 210: | Line 210: | ||
[https://doi.org/10.1038/s41467-023-37353-8 Pan-cancer classification of single cells in the tumour microenvironment] | [https://doi.org/10.1038/s41467-023-37353-8 Pan-cancer classification of single cells in the tumour microenvironment] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/17 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-30 | |style="padding:.4em;"|23-30 | ||
Line 217: | Line 217: | ||
[https://doi.org/10.1038/s41587-023-01686-y Single-cell mapping of combinatorial target antigens for CAR switches using logic gates] | [https://doi.org/10.1038/s41587-023-01686-y Single-cell mapping of combinatorial target antigens for CAR switches using logic gates] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/10 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-29 | |style="padding:.4em;"|23-29 | ||
Line 224: | Line 224: | ||
[https://doi.org/10.1038/s41587-023-01782-z Comparative analysis of cell–cell communication at single-cell resolution] | [https://doi.org/10.1038/s41587-023-01782-z Comparative analysis of cell–cell communication at single-cell resolution] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/26 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-28 | |style="padding:.4em;"|23-28 | ||
Line 231: | Line 231: | ||
[https://doi.org/10.1038/s43018-023-00566-3 Phenotypic diversity of T cells in human primary and metastatic brain tumors revealed by multiomic interrogation] | [https://doi.org/10.1038/s43018-023-00566-3 Phenotypic diversity of T cells in human primary and metastatic brain tumors revealed by multiomic interrogation] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/19 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-27 | |style="padding:.4em;"|23-27 | ||
Line 238: | Line 238: | ||
[https://doi.org/10.1038/s41591-023-02324-5 An integrated tumor, immune and microbiome atlas of colon cancer] | [https://doi.org/10.1038/s41591-023-02324-5 An integrated tumor, immune and microbiome atlas of colon cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/12 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-26 | |style="padding:.4em;"|23-26 | ||
Line 245: | Line 245: | ||
[https://doi.org/10.1101/2023.01.17.524482 Decoupling the correlation between cytotoxic and exhausted T lymphocyte transcriptomic signatures enhances melanoma immunotherapy response prediction from tumor expression] | [https://doi.org/10.1101/2023.01.17.524482 Decoupling the correlation between cytotoxic and exhausted T lymphocyte transcriptomic signatures enhances melanoma immunotherapy response prediction from tumor expression] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/05 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-25 | |style="padding:.4em;"|23-25 | ||
Line 432: | Line 432: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/08 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-48 | |style="padding:.4em;"|23-48 | ||
Line 439: | Line 439: | ||
[https://doi.org/10.1038/s41467-023-39264-0 A data-driven approach for predicting the impact of drugs on the human microbiome] | [https://doi.org/10.1038/s41467-023-39264-0 A data-driven approach for predicting the impact of drugs on the human microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-47 | |style="padding:.4em;"|23-47 | ||
Line 446: | Line 446: | ||
[https://doi.org/10.1101/2023.04.06.535777 Activation of programmed cell death and counter-defense functions of phage accessory genes] | [https://doi.org/10.1101/2023.04.06.535777 Activation of programmed cell death and counter-defense functions of phage accessory genes] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-46 | |style="padding:.4em;"|23-46 | ||
Line 453: | Line 453: | ||
[https://doi.org/10.1038/s41467-023-39459-5 Top-down identification of keystone taxa in the microbiome] | [https://doi.org/10.1038/s41467-023-39459-5 Top-down identification of keystone taxa in the microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/10/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-45 | |style="padding:.4em;"|23-45 | ||
Line 460: | Line 460: | ||
[https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | [https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/10/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-44 | |style="padding:.4em;"|23-44 | ||
Line 467: | Line 467: | ||
[https://doi.org/10.1186/s13059-023-03028-2 Reconstruction of the last bacterial common ancestor from 183 pangenomes reveals a versatile ancient core genome] | [https://doi.org/10.1186/s13059-023-03028-2 Reconstruction of the last bacterial common ancestor from 183 pangenomes reveals a versatile ancient core genome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/18 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-43 | |style="padding:.4em;"|23-43 | ||
Line 474: | Line 474: | ||
[https://doi.org/10.1038/s41587-023-01868-8 Generation of accurate, expandable phylogenomic trees with uDance] | [https://doi.org/10.1038/s41587-023-01868-8 Generation of accurate, expandable phylogenomic trees with uDance] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/18 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-42 | |style="padding:.4em;"|23-42 | ||
Line 481: | Line 481: | ||
[https://doi.org/10.1016/j.immuni.2023.04.003 Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire] | [https://doi.org/10.1016/j.immuni.2023.04.003 Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/11 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-41 | |style="padding:.4em;"|23-41 | ||
Line 488: | Line 488: | ||
[https://doi.org/10.1016/j.immuni.2023.04.017 Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures] | [https://doi.org/10.1016/j.immuni.2023.04.017 Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/11 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-40 | |style="padding:.4em;"|23-40 | ||
Line 495: | Line 495: | ||
[https://doi.org/10.15252/msb.202311525 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | [https://doi.org/10.15252/msb.202311525 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/04 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-39 | |style="padding:.4em;"|23-39 | ||
Line 502: | Line 502: | ||
[https://doi.org/10.1038/s41591-023-02407-3 Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer] | [https://doi.org/10.1038/s41591-023-02407-3 Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/04 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-38 | |style="padding:.4em;"|23-38 | ||
Line 509: | Line 509: | ||
[https://doi.org/10.1101/2023.03.05.531206 You can move, but you can’t hide: identification of mobile genetic elements with geNomad] | [https://doi.org/10.1101/2023.03.05.531206 You can move, but you can’t hide: identification of mobile genetic elements with geNomad] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/09/27 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-37 | |style="padding:.4em;"|23-37 | ||
Line 516: | Line 516: | ||
[https://doi.org/10.1038/s41591-023-02424-2 The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans] | [https://doi.org/10.1038/s41591-023-02424-2 The airway microbiome mediates the interaction between environmental exposure and respiratory health in humans] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/09/27 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-36 | |style="padding:.4em;"|23-36 | ||
Line 523: | Line 523: | ||
[https://doi.org/10.1080/19490976.2023.2224474 Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy] | [https://doi.org/10.1080/19490976.2023.2224474 Ordering taxa in image convolution networks improves microbiome-based machine learning accuracy] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/20 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-35 | |style="padding:.4em;"|23-35 | ||
Line 530: | Line 530: | ||
[https://doi.org/10.1101/2023.08.12.553040 The defensome of complex bacterial communities] | [https://doi.org/10.1101/2023.08.12.553040 The defensome of complex bacterial communities] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/20 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-34 | |style="padding:.4em;"|23-34 | ||
Line 537: | Line 537: | ||
[https://doi.org/10.1016/j.cell.2023.03.011 Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment] | [https://doi.org/10.1016/j.cell.2023.03.011 Dietary tryptophan metabolite released by intratumoral Lactobacillus reuteri facilitates immune checkpoint inhibitor treatment] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/13 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-33 | |style="padding:.4em;"|23-33 | ||
Line 544: | Line 544: | ||
[https://doi.org/10.1038/s43587-022-00306-9 Toward an improved definition of a healthy microbiome for healthy aging] | [https://doi.org/10.1038/s43587-022-00306-9 Toward an improved definition of a healthy microbiome for healthy aging] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/13 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-32 | |style="padding:.4em;"|23-32 | ||
Line 551: | Line 551: | ||
[https://doi.org/10.1038/s43587-022-00287-9 Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults] | [https://doi.org/10.1038/s43587-022-00287-9 Associations of the skin, oral and gut microbiome with aging, frailty and infection risk reservoirs in older adults] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/06 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-31 | |style="padding:.4em;"|23-31 | ||
Line 558: | Line 558: | ||
[https://doi.org/10.7554/eLife.50240 Adjusting for age improves identification of gut microbiome alterations in multiple diseases] | [https://doi.org/10.7554/eLife.50240 Adjusting for age improves identification of gut microbiome alterations in multiple diseases] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/06 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-30 | |style="padding:.4em;"|23-30 |
Revision as of 15:21, 22 August 2023
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |