Difference between revisions of "Journal Club"
Line 8: | Line 8: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/28 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-33 | |style="padding:.4em;"|23-33 | ||
Line 15: | Line 15: | ||
[https://doi.org/10.1038/s41588-022-01273-y MHC II immunogenicity shapes the neoepitope landscape in human tumors] | [https://doi.org/10.1038/s41588-022-01273-y MHC II immunogenicity shapes the neoepitope landscape in human tumors] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/21 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-32 | |style="padding:.4em;"|23-32 | ||
Line 22: | Line 22: | ||
[https://doi.org/10.1038/s41586-023-06130-4 Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours] | [https://doi.org/10.1038/s41586-023-06130-4 Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/11/07 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-31 | |style="padding:.4em;"|23-31 | ||
Line 29: | Line 29: | ||
[https://doi.org/10.1038/s41467-023-37353-8 Pan-cancer classification of single cells in the tumour microenvironment] | [https://doi.org/10.1038/s41467-023-37353-8 Pan-cancer classification of single cells in the tumour microenvironment] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/31 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-30 | |style="padding:.4em;"|23-30 | ||
Line 36: | Line 36: | ||
[https://doi.org/10.1038/s41587-023-01686-y Single-cell mapping of combinatorial target antigens for CAR switches using logic gates] | [https://doi.org/10.1038/s41587-023-01686-y Single-cell mapping of combinatorial target antigens for CAR switches using logic gates] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/24 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-29 | |style="padding:.4em;"|23-29 | ||
Line 84: | Line 84: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/12/06 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-48 | |style="padding:.4em;"|23-48 | ||
Line 91: | Line 91: | ||
[https://doi.org/10.1038/s41467-023-39264-0 A data-driven approach for predicting the impact of drugs on the human microbiome] | [https://doi.org/10.1038/s41467-023-39264-0 A data-driven approach for predicting the impact of drugs on the human microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/29 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-47 | |style="padding:.4em;"|23-47 | ||
Line 98: | Line 98: | ||
[https://doi.org/10.1101/2023.04.06.535777 Activation of programmed cell death and counter-defense functions of phage accessory genes] | [https://doi.org/10.1101/2023.04.06.535777 Activation of programmed cell death and counter-defense functions of phage accessory genes] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/29 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-46 | |style="padding:.4em;"|23-46 | ||
Line 105: | Line 105: | ||
[https://doi.org/10.1038/s41467-023-39459-5 Top-down identification of keystone taxa in the microbiome] | [https://doi.org/10.1038/s41467-023-39459-5 Top-down identification of keystone taxa in the microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/22 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-45 | |style="padding:.4em;"|23-45 | ||
Line 112: | Line 112: | ||
[https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | [https://doi.org/10.1016/j.cels.2022.12.007 Pitfalls of genotyping microbial communities with rapidly growing genome collections] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/22 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-44 | |style="padding:.4em;"|23-44 | ||
Line 119: | Line 119: | ||
[https://doi.org/10.1186/s13059-023-03028-2 Reconstruction of the last bacterial common ancestor from 183 pangenomes reveals a versatile ancient core genome] | [https://doi.org/10.1186/s13059-023-03028-2 Reconstruction of the last bacterial common ancestor from 183 pangenomes reveals a versatile ancient core genome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/08 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-43 | |style="padding:.4em;"|23-43 | ||
Line 126: | Line 126: | ||
[https://doi.org/10.1038/s41587-023-01868-8 Generation of accurate, expandable phylogenomic trees with uDance] | [https://doi.org/10.1038/s41587-023-01868-8 Generation of accurate, expandable phylogenomic trees with uDance] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/11/ | + | |style="padding:.4em;" rowspan=1|2023/11/08 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-42 | |style="padding:.4em;"|23-42 | ||
Line 133: | Line 133: | ||
[https://doi.org/10.1016/j.immuni.2023.04.003 Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire] | [https://doi.org/10.1016/j.immuni.2023.04.003 Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/11/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-41 | |style="padding:.4em;"|23-41 | ||
Line 140: | Line 140: | ||
[https://doi.org/10.1016/j.immuni.2023.04.017 Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures] | [https://doi.org/10.1016/j.immuni.2023.04.017 Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/11/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-40 | |style="padding:.4em;"|23-40 | ||
Line 147: | Line 147: | ||
[https://doi.org/10.15252/msb.202311525 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | [https://doi.org/10.15252/msb.202311525 Consistency across multi-omics layers in a drug-perturbed gut microbial community] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-39 | |style="padding:.4em;"|23-39 | ||
Line 154: | Line 154: | ||
[https://doi.org/10.1038/s41591-023-02407-3 Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer] | [https://doi.org/10.1038/s41591-023-02407-3 Microbiome-derived cobalamin and succinyl-CoA as biomarkers for improved screening of anal cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/10/ | + | |style="padding:.4em;" rowspan=1|2023/10/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-38 | |style="padding:.4em;"|23-38 |
Revision as of 15:46, 10 October 2023
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/11/28 | Single-cell | 23-33 | EJ Sung |
MHC II immunogenicity shapes the neoepitope landscape in human tumors |
2023/11/21 | Single-cell | 23-32 | IS Choi |
Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours |
2023/11/07 | Single-cell | 23-31 | JW Yu |
Pan-cancer classification of single cells in the tumour microenvironment |
2023/10/31 | Single-cell | 23-30 | JH Cha |
Single-cell mapping of combinatorial target antigens for CAR switches using logic gates |
2023/10/24 | Single-cell | 23-29 | SB Baek |
Comparative analysis of cell–cell communication at single-cell resolution |
2023/09/26 | Single-cell | 23-28 | EJ Sung | |
2023/09/19 | Single-cell | 23-27 | IS Choi |
An integrated tumor, immune and microbiome atlas of colon cancer |
2023/09/12 | Single-cell | 23-26 | SB Baek | |
2023/09/05 | Single-cell | 23-25 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/08/30 | Single-cell | 23-24 | JW Yu | |
2023/08/09 | Single-cell | 23-23 | IS Choi |
Major data analysis errors invalidate cancer microbiome findings |
2023/08/02 | Single-cell | 23-22 | EJ Sung | |
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |