Difference between revisions of "Journal Club"
Line 154: | Line 154: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/02/ | + | |style="padding:.4em;" rowspan=1|2024/02/21 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-66 | |style="padding:.4em;"|23-66 | ||
Line 161: | Line 161: | ||
[https://doi.org/10.1101/2023.09.18.558355 Structural and Functional Disparities within the Human Gut Virome in terms of Genome Topology and Representative Genome Selection] | [https://doi.org/10.1101/2023.09.18.558355 Structural and Functional Disparities within the Human Gut Virome in terms of Genome Topology and Representative Genome Selection] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/02/ | + | |style="padding:.4em;" rowspan=1|2024/02/21 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-65 | |style="padding:.4em;"|23-65 | ||
Line 168: | Line 168: | ||
[https://doi.org/10.1186/s40168-023-01607-w Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis] | [https://doi.org/10.1186/s40168-023-01607-w Phages are unrecognized players in the ecology of the oral pathogen Porphyromonas gingivalis] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/02/14 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-64 | |style="padding:.4em;"|23-64 | ||
Line 175: | Line 175: | ||
[https://doi.org/10.1038/s41587-023-01696-w Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data] | [https://doi.org/10.1038/s41587-023-01696-w Contamination source modeling with SCRuB improves cancer phenotype prediction from microbiome data] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/02/14 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-63 | |style="padding:.4em;"|23-63 | ||
Line 182: | Line 182: | ||
[https://doi.org/10.1038/s41564-023-01439-2 A predicted CRISPR-mediated symbiosis between uncultivated archaea] | [https://doi.org/10.1038/s41564-023-01439-2 A predicted CRISPR-mediated symbiosis between uncultivated archaea] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/02/07 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-62 | |style="padding:.4em;"|23-62 | ||
Line 189: | Line 189: | ||
[https://doi.org/10.1038/s41586-023-06431-8 Mapping the T cell repertoire to a complex gut bacterial community] | [https://doi.org/10.1038/s41586-023-06431-8 Mapping the T cell repertoire to a complex gut bacterial community] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/02/07 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-61 | |style="padding:.4em;"|23-61 | ||
Line 196: | Line 196: | ||
[https://doi.org/10.1101/2023.07.03.547607 Multi-view integration of microbiome data for identifying disease-associated modules] | [https://doi.org/10.1101/2023.07.03.547607 Multi-view integration of microbiome data for identifying disease-associated modules] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/24 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-60 | |style="padding:.4em;"|23-60 | ||
Line 203: | Line 203: | ||
[https://doi.org/10.1101/2023.09.28.559994 Phage-bacteria dynamics during the first years of life revealed by trans-kingdom marker gene analysis] | [https://doi.org/10.1101/2023.09.28.559994 Phage-bacteria dynamics during the first years of life revealed by trans-kingdom marker gene analysis] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/24 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-59 | |style="padding:.4em;"|23-59 | ||
Line 210: | Line 210: | ||
[https://doi.org/10.1038/s41593-023-01361-0 Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles] | [https://doi.org/10.1038/s41593-023-01361-0 Multi-level analysis of the gut–brain axis shows autism spectrum disorder-associated molecular and microbial profiles] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/17 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-58 | |style="padding:.4em;"|23-58 | ||
Line 217: | Line 217: | ||
[https://doi.org/10.1101/2023.11.21.568153 Metagenomic Immunoglobulin Sequencing (MIG-Seq) Exposes Patterns of IgA Antibody Binding in the Healthy Human Gut Microbiome] | [https://doi.org/10.1101/2023.11.21.568153 Metagenomic Immunoglobulin Sequencing (MIG-Seq) Exposes Patterns of IgA Antibody Binding in the Healthy Human Gut Microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/17 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-57 | |style="padding:.4em;"|23-57 | ||
Line 224: | Line 224: | ||
[https://doi.org/10.1038/s41467-023-41042-x Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines] | [https://doi.org/10.1038/s41467-023-41042-x Impact of dietary interventions on pre-diabetic oral and gut microbiome, metabolites and cytokines] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/10 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-56 | |style="padding:.4em;"|23-56 | ||
Line 231: | Line 231: | ||
[https://doi.org/10.1038/s41592-023-02018-3 Fast and robust metagenomic sequence comparison through sparse chaining with skani] | [https://doi.org/10.1038/s41592-023-02018-3 Fast and robust metagenomic sequence comparison through sparse chaining with skani] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/10 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-55 | |style="padding:.4em;"|23-55 | ||
Line 238: | Line 238: | ||
[https://doi.org/10.1038/s41591-023-02599-8 Bacterial SNPs in the human gut microbiome associate with host BMI] | [https://doi.org/10.1038/s41591-023-02599-8 Bacterial SNPs in the human gut microbiome associate with host BMI] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/01/03 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-54 | |style="padding:.4em;"|23-54 | ||
Line 245: | Line 245: | ||
[https://doi.org/10.1080/19490976.2023.2245562 Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer] | [https://doi.org/10.1080/19490976.2023.2245562 Multimodal metagenomic analysis reveals microbial single nucleotide variants as superior biomarkers for early detection of colorectal cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/01/03 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-53 | |style="padding:.4em;"|23-53 | ||
Line 252: | Line 252: | ||
[https://doi.org/10.1016/j.chom.2023.10.005 Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts] | [https://doi.org/10.1016/j.chom.2023.10.005 Multi-kingdom gut microbiota analyses define bacterial-fungal interplay and microbial markers of pan-cancer immunotherapy across cohorts] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/12/ | + | |style="padding:.4em;" rowspan=1|2023/12/27 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-52 | |style="padding:.4em;"|23-52 | ||
Line 259: | Line 259: | ||
[https://doi.org/10.1016/j.xcrm.2023.101251 Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response] | [https://doi.org/10.1016/j.xcrm.2023.101251 Prior antibiotic administration disrupts anti-PD-1 responses in advanced gastric cancer by altering the gut microbiome and systemic immune response] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/12/ | + | |style="padding:.4em;" rowspan=1|2023/12/27 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-51 | |style="padding:.4em;"|23-51 |
Revision as of 13:28, 5 December 2023
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/08/30 | Single-cell | 23-24 | JW Yu | |
2023/08/09 | Single-cell | 23-23 | IS Choi |
Major data analysis errors invalidate cancer microbiome findings |
2023/08/02 | Single-cell | 23-22 | EJ Sung | |
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |