Difference between revisions of "Journal Club"
Line 8: | Line 8: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/03/05 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-43 | |style="padding:.4em;"|23-43 | ||
Line 15: | Line 15: | ||
[https://doi.org/10.1101/2023.11.03.565463 Integrating single-cell RNA-seq datasets with substantial batch effects] | [https://doi.org/10.1101/2023.11.03.565463 Integrating single-cell RNA-seq datasets with substantial batch effects] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/02/ | + | |style="padding:.4em;" rowspan=1|2024/02/27 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-42 | |style="padding:.4em;"|23-42 | ||
Line 22: | Line 22: | ||
[https://doi.org/10.1038/s41587-021-00896-6 Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID] | [https://doi.org/10.1038/s41587-021-00896-6 Gene signature extraction and cell identity recognition at the single-cell level with Cell-ID] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/02/ | + | |style="padding:.4em;" rowspan=1|2024/02/20 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-41 | |style="padding:.4em;"|23-41 | ||
Line 29: | Line 29: | ||
[https://doi.org/10.1016/j.xgen.2023.100383 Polygenic regression uncovers trait-relevant cellular contexts through pathway activation transformation of single-cell RNA sequencing data] | [https://doi.org/10.1016/j.xgen.2023.100383 Polygenic regression uncovers trait-relevant cellular contexts through pathway activation transformation of single-cell RNA sequencing data] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/02/ | + | |style="padding:.4em;" rowspan=1|2024/02/13 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-40 | |style="padding:.4em;"|23-40 | ||
Line 36: | Line 36: | ||
[https://doi.org/10.1038/s41592-023-02035-2 Population-level integration of single-cell datasets enables multi-scale analysis across samples] | [https://doi.org/10.1038/s41592-023-02035-2 Population-level integration of single-cell datasets enables multi-scale analysis across samples] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/02/06 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-39 | |style="padding:.4em;"|23-39 | ||
Line 43: | Line 43: | ||
[https://doi.org/10.1038/s43587-023-00514-x scDiffCom: a tool for differential analysis of cell–cell interactions provides a mouse atlas of aging changes in intercellular communication] | [https://doi.org/10.1038/s43587-023-00514-x scDiffCom: a tool for differential analysis of cell–cell interactions provides a mouse atlas of aging changes in intercellular communication] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/30 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-38 | |style="padding:.4em;"|23-38 | ||
Line 50: | Line 50: | ||
[https://doi.org/10.1038/s41587-022-01467-z Modeling intercellular communication in tissues using spatial graphs of cells] | [https://doi.org/10.1038/s41587-022-01467-z Modeling intercellular communication in tissues using spatial graphs of cells] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/01/ | + | |style="padding:.4em;" rowspan=1|2024/01/16 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-37 | |style="padding:.4em;"|23-37 | ||
Line 57: | Line 57: | ||
[https://doi.org/10.1038/s41588-023-01523-7 Precise identification of cell states altered in disease using healthy single-cell references] | [https://doi.org/10.1038/s41588-023-01523-7 Precise identification of cell states altered in disease using healthy single-cell references] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2024/01/09 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-36 | |style="padding:.4em;"|23-36 | ||
Line 64: | Line 64: | ||
[https://aacrjournals.org/clincancerres/article/29/19/3924/729105/Learning-Individual-Survival-Models-from-PanCancer Learning Individual Survival Models from PanCancer Whole Transcriptome Data] | [https://aacrjournals.org/clincancerres/article/29/19/3924/729105/Learning-Individual-Survival-Models-from-PanCancer Learning Individual Survival Models from PanCancer Whole Transcriptome Data] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1| | + | |style="padding:.4em;" rowspan=1|2024/01/02 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|23-35 | |style="padding:.4em;"|23-35 |
Revision as of 20:04, 23 December 2023
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/08/30 | Single-cell | 23-24 | JW Yu | |
2023/08/09 | Single-cell | 23-23 | IS Choi |
Major data analysis errors invalidate cancer microbiome findings |
2023/08/02 | Single-cell | 23-22 | EJ Sung | |
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |