Difference between revisions of "Journal Club"
| Line 430: | Line 430: | ||
!scope="col" style="padding:.4em" | Paper title  | !scope="col" style="padding:.4em" | Paper title  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/  | + | |style="padding:.4em;" rowspan=1|2024/08/21  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 437: | Line 437: | ||
[https://doi.org/10.1016/j.chom.2024.03.005 A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota]  | [https://doi.org/10.1016/j.chom.2024.03.005 A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/  | + | |style="padding:.4em;" rowspan=1|2024/08/14  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 444: | Line 444: | ||
[https://doi.org/10.1038/s41586-024-07487-w Accurate structure prediction of biomolecular interactions with AlphaFold 3]  | [https://doi.org/10.1038/s41586-024-07487-w Accurate structure prediction of biomolecular interactions with AlphaFold 3]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/  | + | |style="padding:.4em;" rowspan=1|2024/08/14  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 451: | Line 451: | ||
[https://doi.org/10.1038/s41591-024-02963-2 Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development]  | [https://doi.org/10.1038/s41591-024-02963-2 Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/  | + | |style="padding:.4em;" rowspan=1|2024/08/07  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 458: | Line 458: | ||
[https://doi.org/10.1186/s40168-023-01737-1 Gut microbiome-metabolome interactions predict host condition]  | [https://doi.org/10.1186/s40168-023-01737-1 Gut microbiome-metabolome interactions predict host condition]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/08/  | + | |style="padding:.4em;" rowspan=1|2024/08/07  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 465: | Line 465: | ||
[https://doi.org/10.1038/s41587-023-01917-2 Protein remote homology detection and structural alignment using deep learning]  | [https://doi.org/10.1038/s41587-023-01917-2 Protein remote homology detection and structural alignment using deep learning]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/  | + | |style="padding:.4em;" rowspan=1|2024/07/31  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 472: | Line 472: | ||
[https://doi.org/10.1038/s41564-024-01751-5 A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome]  | [https://doi.org/10.1038/s41564-024-01751-5 A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/  | + | |style="padding:.4em;" rowspan=1|2024/07/31  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 479: | Line 479: | ||
[https://doi.org/10.1101/2023.12.11.571168 Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression]  | [https://doi.org/10.1101/2023.12.11.571168 Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024  | + | |style="padding:.4em;" rowspan=1|2024/07/24  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 486: | Line 486: | ||
[https://doi.org/10.1101/2024.06.04.596112 Compositional Differential Abundance Testing: Defining and Finding a New Type of Health-Microbiome Associations]  | [https://doi.org/10.1101/2024.06.04.596112 Compositional Differential Abundance Testing: Defining and Finding a New Type of Health-Microbiome Associations]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/07/  | + | |style="padding:.4em;" rowspan=1|2024/07/24  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 493: | Line 493: | ||
[https://doi.org/10.1016/j.cell.2024.05.013 Discovery of antimicrobial peptides in the global microbiome with machine learning]  | [https://doi.org/10.1016/j.cell.2024.05.013 Discovery of antimicrobial peptides in the global microbiome with machine learning]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/07/  | + | |style="padding:.4em;" rowspan=1|2024/07/17  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 500: | Line 500: | ||
[https://doi.org/10.1016/j.cell.2024.05.029 Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome]  | [https://doi.org/10.1016/j.cell.2024.05.029 Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/07/  | + | |style="padding:.4em;" rowspan=1|2024/07/17  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
| Line 507: | Line 507: | ||
[https://doi.org/10.1038/s41586-024-07336-w Paternal microbiome perturbations impact offspring fitness]  | [https://doi.org/10.1038/s41586-024-07336-w Paternal microbiome perturbations impact offspring fitness]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2024/07/  | + | |style="padding:.4em;" rowspan=1|2024/07/10  | 
|style="padding:.4em;" rowspan=1|Microbiome  | |style="padding:.4em;" rowspan=1|Microbiome  | ||
|style="padding:.4em;"|24-23  | |style="padding:.4em;"|24-23  | ||
Revision as of 13:56, 30 June 2024
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2024/06/18 | Single-cell | 24-32 | EB Hong | 
 Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory  | 
| 2024/06/18 | Single-cell | 24-31 | JJ Heo | 
 scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses  | 
| 2024/06/18 | Single-cell | 24-30 | SM Han | 
 Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution  | 
| 2024/06/18 | Single-cell | 24-29 | HJ Choi | |
| 2024/06/11 | Single-cell | 24-28 | SA Choi | |
| 2024/06/11 | Single-cell | 24-27 | HJ Cha | 
 Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics  | 
| 2024/06/11 | Single-cell | 24-26 | YK Jung | |
| 2024/06/11 | Single-cell | 24-25 | HJ Lee | |
| 2024/06/04 | Single-cell | 24-24 | HK Lee | 
 Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas  | 
| 2024/06/04 | Single-cell | 24-23 | JI Lee | 
 Multimodal spatiotemporal phenotyping of human retinal organoid development  | 
| 2024/06/04 | Single-cell | 24-22 | JH Lee | |
| 2024/06/04 | Single-cell | 24-21 | JH Lee | 
 A single-cell analysis of the Arabidopsis vegetative shoot apex  | 
| 2024/05/28 | Single-cell | 24-20 | JH Lee | 
 Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq  | 
| 2024/05/28 | Single-cell | 24-19 | YH Lee | |
| 2024/05/28 | Single-cell | 24-18 | EB Yu | |
| 2024/05/28 | Single-cell | 24-17 | DY Won | 
 Spatial metatranscriptomics resolves host–bacteria–fungi interactomes  | 
| 2024/05/21 | Single-cell | 24-16 | SG Oh | |
| 2024/05/21 | Single-cell | 24-15 | SY Park | |
| 2024/05/21 | Single-cell | 24-14 | HS Moon | |
| 2024/05/21 | Single-cell | 24-13 | JH Nam | 
 Spatial cellular architecture predicts prognosis in glioblastoma  | 
| 2024/05/14 | Single-cell | 24-12 | HS Na | |
| 2024/05/14 | Single-cell | 24-11 | PK Kim | 
 Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity  | 
| 2024/05/14 | Single-cell | 24-10 | SH Kwon | |
| 2024/05/14 | Single-cell | 24-9 | Q Zhen | |
| 2024/05/07 | Single-cell | 24-8 | CR Leenaars | |
| 2024/05/07 | Single-cell | 24-7 | YR Kim | |
| 2024/05/07 | Single-cell | 24-6 | JY Kim | 
 Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases  | 
| 2024/05/07 | Single-cell | 24-5 | WJ Kim | 
 Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment  | 
| 2024/04/23 | Single-cell | 24-4 | G Koh | 
 Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease  | 
| 2024/04/23 | Single-cell | 24-3 | SH Ahn | |
| 2024/04/23 | Single-cell | 24-2 | EJ Sung | |
| 2024/04/23 | Single-cell | 24-1 | HJ Kim | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2023/08/30 | Single-cell | 23-24 | JW Yu | |
| 2023/08/09 | Single-cell | 23-23 | IS Choi | 
 Major data analysis errors invalidate cancer microbiome findings  | 
| 2023/08/02 | Single-cell | 23-22 | EJ Sung | |
| 2023/07/26 | Single-cell | 23-21 | G Koh | |
| 2023/07/19 | Single-cell | 23-20 | JW Yu | 
 Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression  | 
| 2023/07/12 | Single-cell | 23-19 | JH Cha | 
 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data  | 
| 2023/07/05 | Single-cell | 23-18 | SB Baek | 
 Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance  | 
| 2023/06/28 | Single-cell | 23-17 | EJ Sung | |
| 2023/06/21 | Single-cell | 23-16 | IS Choi | |
| 2023/06/14 | Single-cell | 23-15 | G Koh | |
| 2023/05/31 | Single-cell | 23-14 | JW Yu | 
 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma  | 
| 2023/05/24 | Single-cell | 23-13 | JH Cha | |
| 2023/05/17 | Single-cell | 23-12 | SB Baek | |
| 2023/05/10 | Single-cell | 23-11 | EJ Sung | 
 Supervised discovery of interpretable gene programs from single-cell data  | 
| 2023/05/03 | Single-cell | 23-10 | IS Choi | 
 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer  | 
| 2023/04/26 | Single-cell | 23-9 | G Koh | |
| 2023/03/22 | Single-cell | 23-8 | JW Yu | 
 MetaTiME: Meta-components of the Tumor Immune Microenvironment  | 
| 2023/03/08 | Single-cell | 23-7 | JH Cha | |
| 2023/02/21 | Single-cell | 23-6 | SB Baek | |
| 2023/02/14 | Single-cell | 23-5 | EJ Sung | 
 A T cell resilience model associated with response to immunotherapy in multiple tumor types  | 
| 2022/01/31 | Single-cell | 23-4 | IS Choi | |
| 2023/01/25 | Single-cell | 23-3 | G Koh | |
| 2023/01/17 | Single-cell | 23-2 | JW Yu | 
 Pan-cancer integrative histology-genomic analysis via multimodal deep learning  | 
| 2023/01/11 | Single-cell | 23-1 | JH Cha | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/11/23 | Single-cell | 21-39 | IS Choi | |
| 2021/11/16 | Single-cell | 21-38 | SB Back | |
| 2021/11/09 | Single-cell | 21-37 | JH Cha | |
| 2021/11/02 | Single-cell | 21-36 | SB Baek | 
 Functional Inference of Gene Regulation using Single-Cell Multi-Omics  | 
| 2021/10/26 | Single-cell | 21-35 | IS Choi | |
| 2021/10/19 | Single-cell | 21-34 | JH Cha | |
| 2021/10/05 | Single-cell | 21-33 | JH Cha | 
 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma  | 
| 2021/09/28 | Single-cell | 21-32 | SB Baek | |
| 2021/09/14 | Single-cell | 21-31 | IS Choi | |
| 2021/09/07 | Single-cell | 21-30 | JH Cha | 
 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer  | 
| 2021/08/31 | Single-cell | 21-29 | IS Choi | 
 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma  | 
| 2021/08/24 | Single-cell | 21-28 | SB Baek | 
 Interpreting type 1 diabetes risk with genetics and single-cell epigenomics  | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/02/22 | Single-cell | 21-8 | IS Choi | 
 Functional CRISPR dissection of gene networks controlling human regulatory T cell identity  | 
| 21-7 | JH Cha | 
 Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy  | ||
| 2021/02/15 | Single-cell | 21-6 | SB Baek | |
| 21-5 | IS Choi | 
 Trajectory-based differential expression analysis for single-cell sequencing data  | ||
| 2021/02/08 | Single-cell | 21-4 | SB Baek | 
 Genetic determinants of co-accessible chromatin regions in activated T cells across humans  | 
| 21-3 | JH Cha | 
 Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer  | ||
| 2021/02/01 | Single-cell | 21-2 | JW Cho | |
| 21-1 | JW Cho |