Difference between revisions of "Journal Club"
Line 8: | Line 8: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/11/ | + | |style="padding:.4em;" rowspan=1|2022/11/02 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|31-38 | |style="padding:.4em;"|31-38 | ||
Line 15: | Line 15: | ||
[https://www.biorxiv.org/content/10.1101/2021.02.09.430114v2 Single-cell ATAC and RNA sequencing reveal pre-existing and persistent subpopulations of cells associated with relapse of prostate cancer] | [https://www.biorxiv.org/content/10.1101/2021.02.09.430114v2 Single-cell ATAC and RNA sequencing reveal pre-existing and persistent subpopulations of cells associated with relapse of prostate cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/ | + | |style="padding:.4em;" rowspan=1|2022/10/26 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-37 | |style="padding:.4em;"|21-37 | ||
Line 22: | Line 22: | ||
[https://www.biorxiv.org/content/10.1101/2021.03.16.435578v1 Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci] | [https://www.biorxiv.org/content/10.1101/2021.03.16.435578v1 Integrated single-cell transcriptomics and epigenomics reveals strong germinal center-associated etiology of autoimmune risk loci] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/10/ | + | |style="padding:.4em;" rowspan=1|2022/10/19 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-36 | |style="padding:.4em;"|21-36 | ||
Line 29: | Line 29: | ||
[https://www.biorxiv.org/content/10.1101/2021.07.28.453784v1 Functional Inference of Gene Regulation using Single-Cell Multi-Omics] | [https://www.biorxiv.org/content/10.1101/2021.07.28.453784v1 Functional Inference of Gene Regulation using Single-Cell Multi-Omics] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/10/ | + | |style="padding:.4em;" rowspan=1|2022/10/12 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-35 | |style="padding:.4em;"|21-35 | ||
Line 36: | Line 36: | ||
[https://www.biorxiv.org/content/10.1101/2021.03.24.436532v1 Single-cell analyses reveal a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer] | [https://www.biorxiv.org/content/10.1101/2021.03.24.436532v1 Single-cell analyses reveal a continuum of cell state and composition changes in the malignant transformation of polyps to colorectal cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=2|2022/10/ | + | |style="padding:.4em;" rowspan=2|2022/10/05 |
|style="padding:.4em;" rowspan=2|Single-cell | |style="padding:.4em;" rowspan=2|Single-cell | ||
|style="padding:.4em;"|21-34 | |style="padding:.4em;"|21-34 | ||
Line 48: | Line 48: | ||
[https://www.sciencedirect.com/science/article/pii/S1535610821001173 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma] | [https://www.sciencedirect.com/science/article/pii/S1535610821001173 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/ | + | |style="padding:.4em;" rowspan=1|2022/09/28 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-32 | |style="padding:.4em;"|21-32 | ||
Line 55: | Line 55: | ||
[https://www.sciencedirect.com/science/article/pii/S1074761321001199 Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells] | [https://www.sciencedirect.com/science/article/pii/S1074761321001199 Single-cell chromatin accessibility landscape identifies tissue repair program in human regulatory T cells] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/09/ | + | |style="padding:.4em;" rowspan=1|2022/09/14 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-31 | |style="padding:.4em;"|21-31 | ||
Line 62: | Line 62: | ||
[https://www.nature.com/articles/s41591-021-01232-w Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing] | [https://www.nature.com/articles/s41591-021-01232-w Identification of resistance pathways and therapeutic targets in relapsed multiple myeloma patients through single-cell sequencing] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/09/ | + | |style="padding:.4em;" rowspan=1|2022/09/07 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-30 | |style="padding:.4em;"|21-30 | ||
Line 69: | Line 69: | ||
[https://www.nature.com/articles/s41591-021-01323-8 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer] | [https://www.nature.com/articles/s41591-021-01323-8 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2022/ | + | |style="padding:.4em;" rowspan=1|2022/08/31 |
|style="padding:.4em;" rowspan=1|Single-cell | |style="padding:.4em;" rowspan=1|Single-cell | ||
|style="padding:.4em;"|21-29 | |style="padding:.4em;"|21-29 |
Revision as of 17:57, 17 August 2021
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2022/11/02 | Single-cell | 31-38 | SB Back | |
2022/10/26 | Single-cell | 21-37 | JH Cha | |
2022/10/19 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2022/10/12 | Single-cell | 21-35 | IS Choi | |
2022/10/05 | Single-cell | 21-34 | JH Cha | |
21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma | ||
2022/09/28 | Single-cell | 21-32 | SB Baek | |
2022/09/14 | Single-cell | 21-31 | IS Choi | |
2022/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2022/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2022/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |