Difference between revisions of "Journal Club"
Line 11: | Line 11: | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-15 | |style="padding:.4em;"|22-15 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|HY Kang |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.biorxiv.org/content/10.1101/2022.07.06.499075v1 Maast: genotyping thousands of microbial strains efficiently] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/19 | |style="padding:.4em;" rowspan=1|2022/08/19 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-14 | |style="padding:.4em;"|22-14 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|YJ Roh |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.biorxiv.org/content/10.1101/2022.06.16.496510v2 MIDAS2: Metagenomic Intra-species Diversity Analysis System] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/19 | |style="padding:.4em;" rowspan=1|2022/08/19 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-13 | |style="padding:.4em;"|22-13 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|SC Yang |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.biorxiv.org/content/10.1101/2022.02.01.478746v2 Scalable microbial strain inference in metagenomic data using StrainFacts] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/16 | |style="padding:.4em;" rowspan=1|2022/08/16 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-12 | |style="padding:.4em;"|22-12 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|SH Ahn |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.biorxiv.org/content/10.1101/2022.02.15.480535v1 StrainPanDA: linked reconstruction of strain composition and gene content profiles via pangenome-based decomposition of metagenomic data] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/16 | |style="padding:.4em;" rowspan=1|2022/08/16 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-11 | |style="padding:.4em;"|22-11 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|HJ Kim |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-022-01251-w Metagenomic strain detection with SameStr: identification of a persisting core gut microbiota transferable by fecal transplantation] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/16 | |style="padding:.4em;" rowspan=1|2022/08/16 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-10 | |style="padding:.4em;"|22-10 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|JY Ma |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.nature.com/articles/s41587-021-01102-3 Fast and accurate metagenotyping of the human gut microbiome with GT-Pro] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/12 | |style="padding:.4em;" rowspan=1|2022/08/12 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-9 | |style="padding:.4em;"|22-9 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|JH Cha |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.nature.com/articles/s41587-020-00797-0 inStrain profiles population microdiversity from metagenomic data and sensitively detects shared microbial strains] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/12 | |style="padding:.4em;" rowspan=1|2022/08/12 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-8 | |style="padding:.4em;"|22-8 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|NY Kim |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://genome.cshlp.org/content/early/2021/07/22/gr.265058.120 Longitudinal linked-read sequencing reveals ecological and evolutionary responses of a human gut microbiome during antibiotic treatment] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/12 | |style="padding:.4em;" rowspan=1|2022/08/12 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-7 | |style="padding:.4em;"|22-7 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|SH Lee |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.sciencedirect.com/science/article/pii/S1931312821002365 Dispersal strategies shape persistence and evolution of human gut bacteria] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/09 | |style="padding:.4em;" rowspan=1|2022/08/09 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-6 | |style="padding:.4em;"|22-6 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|SH Ahn |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.sciencedirect.com/science/article/pii/S0092867421003524 The long-term genetic stability and individual specificity of the human gut microbiome] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/09 | |style="padding:.4em;" rowspan=1|2022/08/09 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-5 | |style="padding:.4em;"|22-5 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|HJ Kim |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://genomebiology.biomedcentral.com/articles/10.1186/s13059-020-02042-y Analysis of 1321 Eubacterium rectale genomes from metagenomes uncovers complex phylogeographic population structure and subspecies functional adaptations] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/08/09 | |style="padding:.4em;" rowspan=1|2022/08/09 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-4 | |style="padding:.4em;"|22-4 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|JY Ma |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000102 Evolutionary dynamics of bacteria in the gut microbiome within and across hosts] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/07/29 | |style="padding:.4em;" rowspan=1|2022/07/29 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-3 | |style="padding:.4em;"|22-3 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|JH Cha |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://elifesciences.org/articles/42693 Extensive transmission of microbes along the gastrointestinal tract] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/07/29 | |style="padding:.4em;" rowspan=1|2022/07/29 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-2 | |style="padding:.4em;"|22-2 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|NY Kim |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.cell.com/cell-host-microbe/fulltext/S1931-3128(19)30041-1?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1931312819300411%3Fshowall%3Dtrue Distinct Genetic and Functional Traits of Human Intestinal Prevotella copri Strains Are Associated with Different Habitual Diets] |
|- | |- | ||
|style="padding:.4em;" rowspan=1|2022/07/29 | |style="padding:.4em;" rowspan=1|2022/07/29 | ||
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|22-1 | |style="padding:.4em;"|22-1 | ||
− | |style="padding:.4em;"| | + | |style="padding:.4em;"|SH Lee |
|style="padding:.4em;text-align:left"| | |style="padding:.4em;text-align:left"| | ||
− | [] | + | [https://www.nature.com/articles/nmeth.3802 Strain-level microbial epidemiology and population genomics from shotgun metagenomics] |
|} | |} | ||
Revision as of 13:21, 22 July 2022
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |