Difference between revisions of "Journal Club"
Line 432: | Line 432: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-29 | |style="padding:.4em;"|23-29 | ||
Line 439: | Line 439: | ||
[https://doi.org/10.1038/s41564-023-01370-6 Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan] | [https://doi.org/10.1038/s41564-023-01370-6 Centenarians have a diverse gut virome with the potential to modulate metabolism and promote healthy lifespan] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/09/ | + | |style="padding:.4em;" rowspan=1|2023/09/01 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-28 | |style="padding:.4em;"|23-28 | ||
Line 446: | Line 446: | ||
[https://doi.org/10.1016/j.chom.2023.01.003 Longitudinal comparison of the developing gut virome in infants and their mothers] | [https://doi.org/10.1016/j.chom.2023.01.003 Longitudinal comparison of the developing gut virome in infants and their mothers] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/08/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-27 | |style="padding:.4em;"|23-27 | ||
Line 453: | Line 453: | ||
[https://doi.org/10.1016/j.chom.2023.05.024 Enterosignatures define common bacterial guilds in the human gut microbiome] | [https://doi.org/10.1016/j.chom.2023.05.024 Enterosignatures define common bacterial guilds in the human gut microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023 | + | |style="padding:.4em;" rowspan=1|2023/08/25 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-26 | |style="padding:.4em;"|23-26 | ||
Line 460: | Line 460: | ||
[https://doi.org/10.1186/s13059-023-02902-3 PhyloMed: a phylogeny-based test of mediation effect in microbiome] | [https://doi.org/10.1186/s13059-023-02902-3 PhyloMed: a phylogeny-based test of mediation effect in microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/ | + | |style="padding:.4em;" rowspan=1|2023/08/18 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-25 | |style="padding:.4em;"|23-25 | ||
Line 467: | Line 467: | ||
[https://doi.org/10.1016/j.chom.2023.05.027 The TaxUMAP atlas: Efficient display of large clinical microbiome data reveals ecological competition in protection against bacteremia] | [https://doi.org/10.1016/j.chom.2023.05.027 The TaxUMAP atlas: Efficient display of large clinical microbiome data reveals ecological competition in protection against bacteremia] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/08/ | + | |style="padding:.4em;" rowspan=1|2023/08/18 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-24 | |style="padding:.4em;"|23-24 | ||
Line 474: | Line 474: | ||
[https://doi.org/10.1186/s40168-023-01564-4 Skin microbiome diferentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons] | [https://doi.org/10.1186/s40168-023-01564-4 Skin microbiome diferentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2023/08/ | + | |style="padding:.4em;" rowspan=1|2023/08/11 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|23-23 | |style="padding:.4em;"|23-23 |
Revision as of 10:46, 4 August 2023
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |