Difference between revisions of "Journal Club"
Line 430: | Line 430: | ||
!scope="col" style="padding:.4em" | Paper title | !scope="col" style="padding:.4em" | Paper title | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/08/21 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 437: | Line 437: | ||
[https://doi.org/10.1016/j.chom.2024.03.005 A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota] | [https://doi.org/10.1016/j.chom.2024.03.005 A metagenomics pipeline reveals insertion sequence-driven evolution of the microbiota] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/08/14 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 444: | Line 444: | ||
[https://doi.org/10.1038/s41586-024-07487-w Accurate structure prediction of biomolecular interactions with AlphaFold 3] | [https://doi.org/10.1038/s41586-024-07487-w Accurate structure prediction of biomolecular interactions with AlphaFold 3] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/08/14 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 451: | Line 451: | ||
[https://doi.org/10.1038/s41591-024-02963-2 Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development] | [https://doi.org/10.1038/s41591-024-02963-2 Microbiome confounders and quantitative profiling challenge predicted microbial targets in colorectal cancer development] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/08/07 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 458: | Line 458: | ||
[https://doi.org/10.1186/s40168-023-01737-1 Gut microbiome-metabolome interactions predict host condition] | [https://doi.org/10.1186/s40168-023-01737-1 Gut microbiome-metabolome interactions predict host condition] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/08/ | + | |style="padding:.4em;" rowspan=1|2024/08/07 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 465: | Line 465: | ||
[https://doi.org/10.1038/s41587-023-01917-2 Protein remote homology detection and structural alignment using deep learning] | [https://doi.org/10.1038/s41587-023-01917-2 Protein remote homology detection and structural alignment using deep learning] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/07/31 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 472: | Line 472: | ||
[https://doi.org/10.1038/s41564-024-01751-5 A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome] | [https://doi.org/10.1038/s41564-024-01751-5 A multi-kingdom collection of 33,804 reference genomes for the human vaginal microbiome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/ | + | |style="padding:.4em;" rowspan=1|2024/07/31 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 479: | Line 479: | ||
[https://doi.org/10.1101/2023.12.11.571168 Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression] | [https://doi.org/10.1101/2023.12.11.571168 Efficient and accurate detection of viral sequences at single-cell resolution reveals putative novel viruses perturbing host gene expression] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024 | + | |style="padding:.4em;" rowspan=1|2024/07/24 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 486: | Line 486: | ||
[https://doi.org/10.1101/2024.06.04.596112 Compositional Differential Abundance Testing: Defining and Finding a New Type of Health-Microbiome Associations] | [https://doi.org/10.1101/2024.06.04.596112 Compositional Differential Abundance Testing: Defining and Finding a New Type of Health-Microbiome Associations] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/24 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 493: | Line 493: | ||
[https://doi.org/10.1016/j.cell.2024.05.013 Discovery of antimicrobial peptides in the global microbiome with machine learning] | [https://doi.org/10.1016/j.cell.2024.05.013 Discovery of antimicrobial peptides in the global microbiome with machine learning] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/17 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 500: | Line 500: | ||
[https://doi.org/10.1016/j.cell.2024.05.029 Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome] | [https://doi.org/10.1016/j.cell.2024.05.029 Custom scoring based on ecological topology of gut microbiota associated with cancer immunotherapy outcome] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/17 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 | ||
Line 507: | Line 507: | ||
[https://doi.org/10.1038/s41586-024-07336-w Paternal microbiome perturbations impact offspring fitness] | [https://doi.org/10.1038/s41586-024-07336-w Paternal microbiome perturbations impact offspring fitness] | ||
|- | |- | ||
− | |style="padding:.4em;" rowspan=1|2024/07/ | + | |style="padding:.4em;" rowspan=1|2024/07/10 |
|style="padding:.4em;" rowspan=1|Microbiome | |style="padding:.4em;" rowspan=1|Microbiome | ||
|style="padding:.4em;"|24-23 | |style="padding:.4em;"|24-23 |
Revision as of 13:56, 30 June 2024
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2024/06/18 | Single-cell | 24-32 | EB Hong |
Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory |
2024/06/18 | Single-cell | 24-31 | JJ Heo |
scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses |
2024/06/18 | Single-cell | 24-30 | SM Han |
Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution |
2024/06/18 | Single-cell | 24-29 | HJ Choi | |
2024/06/11 | Single-cell | 24-28 | SA Choi | |
2024/06/11 | Single-cell | 24-27 | HJ Cha |
Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics |
2024/06/11 | Single-cell | 24-26 | YK Jung | |
2024/06/11 | Single-cell | 24-25 | HJ Lee | |
2024/06/04 | Single-cell | 24-24 | HK Lee |
Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas |
2024/06/04 | Single-cell | 24-23 | JI Lee |
Multimodal spatiotemporal phenotyping of human retinal organoid development |
2024/06/04 | Single-cell | 24-22 | JH Lee | |
2024/06/04 | Single-cell | 24-21 | JH Lee |
A single-cell analysis of the Arabidopsis vegetative shoot apex |
2024/05/28 | Single-cell | 24-20 | JH Lee |
Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq |
2024/05/28 | Single-cell | 24-19 | YH Lee | |
2024/05/28 | Single-cell | 24-18 | EB Yu | |
2024/05/28 | Single-cell | 24-17 | DY Won |
Spatial metatranscriptomics resolves host–bacteria–fungi interactomes |
2024/05/21 | Single-cell | 24-16 | SG Oh | |
2024/05/21 | Single-cell | 24-15 | SY Park | |
2024/05/21 | Single-cell | 24-14 | HS Moon | |
2024/05/21 | Single-cell | 24-13 | JH Nam |
Spatial cellular architecture predicts prognosis in glioblastoma |
2024/05/14 | Single-cell | 24-12 | HS Na | |
2024/05/14 | Single-cell | 24-11 | PK Kim |
Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity |
2024/05/14 | Single-cell | 24-10 | SH Kwon | |
2024/05/14 | Single-cell | 24-9 | Q Zhen | |
2024/05/07 | Single-cell | 24-8 | CR Leenaars | |
2024/05/07 | Single-cell | 24-7 | YR Kim | |
2024/05/07 | Single-cell | 24-6 | JY Kim |
Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases |
2024/05/07 | Single-cell | 24-5 | WJ Kim |
Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment |
2024/04/23 | Single-cell | 24-4 | G Koh |
Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease |
2024/04/23 | Single-cell | 24-3 | SH Ahn | |
2024/04/23 | Single-cell | 24-2 | EJ Sung | |
2024/04/23 | Single-cell | 24-1 | HJ Kim |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2023/08/30 | Single-cell | 23-24 | JW Yu | |
2023/08/09 | Single-cell | 23-23 | IS Choi |
Major data analysis errors invalidate cancer microbiome findings |
2023/08/02 | Single-cell | 23-22 | EJ Sung | |
2023/07/26 | Single-cell | 23-21 | G Koh | |
2023/07/19 | Single-cell | 23-20 | JW Yu |
Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression |
2023/07/12 | Single-cell | 23-19 | JH Cha |
DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data |
2023/07/05 | Single-cell | 23-18 | SB Baek |
Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance |
2023/06/28 | Single-cell | 23-17 | EJ Sung | |
2023/06/21 | Single-cell | 23-16 | IS Choi | |
2023/06/14 | Single-cell | 23-15 | G Koh | |
2023/05/31 | Single-cell | 23-14 | JW Yu |
Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma |
2023/05/24 | Single-cell | 23-13 | JH Cha | |
2023/05/17 | Single-cell | 23-12 | SB Baek | |
2023/05/10 | Single-cell | 23-11 | EJ Sung |
Supervised discovery of interpretable gene programs from single-cell data |
2023/05/03 | Single-cell | 23-10 | IS Choi |
Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer |
2023/04/26 | Single-cell | 23-9 | G Koh | |
2023/03/22 | Single-cell | 23-8 | JW Yu |
MetaTiME: Meta-components of the Tumor Immune Microenvironment |
2023/03/08 | Single-cell | 23-7 | JH Cha | |
2023/02/21 | Single-cell | 23-6 | SB Baek | |
2023/02/14 | Single-cell | 23-5 | EJ Sung |
A T cell resilience model associated with response to immunotherapy in multiple tumor types |
2022/01/31 | Single-cell | 23-4 | IS Choi | |
2023/01/25 | Single-cell | 23-3 | G Koh | |
2023/01/17 | Single-cell | 23-2 | JW Yu |
Pan-cancer integrative histology-genomic analysis via multimodal deep learning |
2023/01/11 | Single-cell | 23-1 | JH Cha |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/11/23 | Single-cell | 21-39 | IS Choi | |
2021/11/16 | Single-cell | 21-38 | SB Back | |
2021/11/09 | Single-cell | 21-37 | JH Cha | |
2021/11/02 | Single-cell | 21-36 | SB Baek |
Functional Inference of Gene Regulation using Single-Cell Multi-Omics |
2021/10/26 | Single-cell | 21-35 | IS Choi | |
2021/10/19 | Single-cell | 21-34 | JH Cha | |
2021/10/05 | Single-cell | 21-33 | JH Cha |
Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma |
2021/09/28 | Single-cell | 21-32 | SB Baek | |
2021/09/14 | Single-cell | 21-31 | IS Choi | |
2021/09/07 | Single-cell | 21-30 | JH Cha |
A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer |
2021/08/31 | Single-cell | 21-29 | IS Choi |
Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma |
2021/08/24 | Single-cell | 21-28 | SB Baek |
Interpreting type 1 diabetes risk with genetics and single-cell epigenomics |
Date | Team | Paper index |
Presenter | Paper title |
---|---|---|---|---|
2021/02/22 | Single-cell | 21-8 | IS Choi |
Functional CRISPR dissection of gene networks controlling human regulatory T cell identity |
21-7 | JH Cha |
Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy | ||
2021/02/15 | Single-cell | 21-6 | SB Baek | |
21-5 | IS Choi |
Trajectory-based differential expression analysis for single-cell sequencing data | ||
2021/02/08 | Single-cell | 21-4 | SB Baek |
Genetic determinants of co-accessible chromatin regions in activated T cells across humans |
21-3 | JH Cha |
Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer | ||
2021/02/01 | Single-cell | 21-2 | JW Cho | |
21-1 | JW Cho |