Difference between revisions of "Journal Club"
| Line 7: | Line 7: | ||
!scope="col" style="padding:.4em" | Paper title  | !scope="col" style="padding:.4em" | Paper title  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/8/22  | 
|style="padding:.4em;"|25-60  | |style="padding:.4em;"|25-60  | ||
|style="padding:.4em;"|SB Lim  | |style="padding:.4em;"|SB Lim  | ||
| Line 13: | Line 13: | ||
[https://www.cell.com/cell/fulltext/S0092-8674(24)01479-X Microbial ecosystems and ecological driving forces in the deepest ocean sediments]  | [https://www.cell.com/cell/fulltext/S0092-8674(24)01479-X Microbial ecosystems and ecological driving forces in the deepest ocean sediments]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/8/22  | 
|style="padding:.4em;"|25-59  | |style="padding:.4em;"|25-59  | ||
|style="padding:.4em;"|HB Lee  | |style="padding:.4em;"|HB Lee  | ||
| Line 19: | Line 19: | ||
[https://www.nature.com/articles/s42256-024-00974-9 A machine learning approach to leveraging electronic health records for enhanced omics analysis]  | [https://www.nature.com/articles/s42256-024-00974-9 A machine learning approach to leveraging electronic health records for enhanced omics analysis]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/8/8  | 
|style="padding:.4em;"|25-58  | |style="padding:.4em;"|25-58  | ||
|style="padding:.4em;"|YR Jung  | |style="padding:.4em;"|YR Jung  | ||
| Line 25: | Line 25: | ||
[https://www.nature.com/articles/s41587-023-01905-6 Predicting transcriptional outcomes of novel multigene perturbations with GEARS]  | [https://www.nature.com/articles/s41587-023-01905-6 Predicting transcriptional outcomes of novel multigene perturbations with GEARS]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/8/8  | 
|style="padding:.4em;"|25-57  | |style="padding:.4em;"|25-57  | ||
|style="padding:.4em;"|YR Kim  | |style="padding:.4em;"|YR Kim  | ||
| Line 31: | Line 31: | ||
[https://www.nature.com/articles/s41592-024-02523-z Nucleotide Transformer: building and evaluating robust foundation models for human genomics]  | [https://www.nature.com/articles/s41592-024-02523-z Nucleotide Transformer: building and evaluating robust foundation models for human genomics]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/8/1  | 
|style="padding:.4em;"|25-56  | |style="padding:.4em;"|25-56  | ||
|style="padding:.4em;"|JY Kim  | |style="padding:.4em;"|JY Kim  | ||
| Line 37: | Line 37: | ||
[https://www.biorxiv.org/content/10.1101/2024.01.10.575018v2 Previously hidden intraspecies dynamics underlie the apparent stability of two important skin microbiome species]  | [https://www.biorxiv.org/content/10.1101/2024.01.10.575018v2 Previously hidden intraspecies dynamics underlie the apparent stability of two important skin microbiome species]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/8/1  | 
|style="padding:.4em;"|25-55  | |style="padding:.4em;"|25-55  | ||
|style="padding:.4em;"|WJ Kim  | |style="padding:.4em;"|WJ Kim  | ||
| Line 43: | Line 43: | ||
[https://www.nature.com/articles/s41564-024-01906-4 Longitudinal phage–bacteria dynamics in the early life gut microbiome]  | [https://www.nature.com/articles/s41564-024-01906-4 Longitudinal phage–bacteria dynamics in the early life gut microbiome]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/7/  | + | |style="padding:.4em;" rowspan=1|2025/7/25  | 
|style="padding:.4em;"|25-54  | |style="padding:.4em;"|25-54  | ||
|style="padding:.4em;"|SH Ahn  | |style="padding:.4em;"|SH Ahn  | ||
| Line 49: | Line 49: | ||
[https://www.biorxiv.org/content/10.1101/2025.03.04.641479v1.full VIRGO2: Unveiling the Functional and Ecological Complexity of the Vaginal Microbiome with an Enhanced Non-Redundant Gene Catalog]  | [https://www.biorxiv.org/content/10.1101/2025.03.04.641479v1.full VIRGO2: Unveiling the Functional and Ecological Complexity of the Vaginal Microbiome with an Enhanced Non-Redundant Gene Catalog]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/7/  | + | |style="padding:.4em;" rowspan=1|2025/7/25  | 
|style="padding:.4em;"|25-53  | |style="padding:.4em;"|25-53  | ||
|style="padding:.4em;"|EJ Sung  | |style="padding:.4em;"|EJ Sung  | ||
| Line 55: | Line 55: | ||
[https://www.biorxiv.org/content/10.1101/2025.02.25.640181v1 geneRNIB: a living benchmark for gene regulatory network inference]  | [https://www.biorxiv.org/content/10.1101/2025.02.25.640181v1 geneRNIB: a living benchmark for gene regulatory network inference]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/7/18  | 
|style="padding:.4em;"|25-52  | |style="padding:.4em;"|25-52  | ||
|style="padding:.4em;"|HJ Kim  | |style="padding:.4em;"|HJ Kim  | ||
| Line 61: | Line 61: | ||
[https://www.biorxiv.org/content/10.1101/2025.02.26.640259v1 Highly accurate prophage island detection with PIDE]  | [https://www.biorxiv.org/content/10.1101/2025.02.26.640259v1 Highly accurate prophage island detection with PIDE]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/7/18  | 
|style="padding:.4em;"|25-51  | |style="padding:.4em;"|25-51  | ||
|style="padding:.4em;"|JY Ma  | |style="padding:.4em;"|JY Ma  | ||
| Line 67: | Line 67: | ||
[https://www.biorxiv.org/content/10.1101/2025.02.18.638918v1 Genome modeling and design across all domains of life with Evo 2]  | [https://www.biorxiv.org/content/10.1101/2025.02.18.638918v1 Genome modeling and design across all domains of life with Evo 2]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/7/11  | 
|style="padding:.4em;"|25-50  | |style="padding:.4em;"|25-50  | ||
|style="padding:.4em;"|JH Cha  | |style="padding:.4em;"|JH Cha  | ||
| Line 73: | Line 73: | ||
[https://www.cell.com/cell/fulltext/S0092-8674(24)01429-6 Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease]  | [https://www.cell.com/cell/fulltext/S0092-8674(24)01429-6 Metagenome-informed metaproteomics of the human gut microbiome, host, and dietary exposome uncovers signatures of health and inflammatory bowel disease]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/7/11  | 
|style="padding:.4em;"|25-49  | |style="padding:.4em;"|25-49  | ||
|style="padding:.4em;"|IS Choi  | |style="padding:.4em;"|IS Choi  | ||
| Line 79: | Line 79: | ||
[https://www.nature.com/articles/s41586-024-08411-y A cell atlas foundation model for scalable search of similar human cells]  | [https://www.nature.com/articles/s41586-024-08411-y A cell atlas foundation model for scalable search of similar human cells]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/7/4  | 
|style="padding:.4em;"|25-48  | |style="padding:.4em;"|25-48  | ||
|style="padding:.4em;"|NY Kim  | |style="padding:.4em;"|NY Kim  | ||
| Line 85: | Line 85: | ||
[https://www.cell.com/med/fulltext/S2666-6340(24)00405-7?uuid=uuid%3Af113d914-7ecf-4e5a-b4c8-00c0a90cfcbe Effects of gut microbiota on immune checkpoint inhibitors in multi-cancer and as microbial biomarkers for predicting therapeutic response]  | [https://www.cell.com/med/fulltext/S2666-6340(24)00405-7?uuid=uuid%3Af113d914-7ecf-4e5a-b4c8-00c0a90cfcbe Effects of gut microbiota on immune checkpoint inhibitors in multi-cancer and as microbial biomarkers for predicting therapeutic response]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/7/4  | 
|style="padding:.4em;"|25-47  | |style="padding:.4em;"|25-47  | ||
|style="padding:.4em;"|SB Lim  | |style="padding:.4em;"|SB Lim  | ||
| Line 91: | Line 91: | ||
[https://pubmed.ncbi.nlm.nih.gov/39999841/ Unveiling familial aggregation of nasopharyngeal carcinoma: Insights from oral microbiome dysbiosis]  | [https://pubmed.ncbi.nlm.nih.gov/39999841/ Unveiling familial aggregation of nasopharyngeal carcinoma: Insights from oral microbiome dysbiosis]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/6/27  | 
|style="padding:.4em;"|25-46  | |style="padding:.4em;"|25-46  | ||
|style="padding:.4em;"|HB Lee  | |style="padding:.4em;"|HB Lee  | ||
| Line 97: | Line 97: | ||
[https://www.biorxiv.org/content/10.1101/2024.05.24.595648v1 SaprotHub: Making Protein Modeling Accessible to All Biologists]  | [https://www.biorxiv.org/content/10.1101/2024.05.24.595648v1 SaprotHub: Making Protein Modeling Accessible to All Biologists]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/6/27  | 
|style="padding:.4em;"|25-45  | |style="padding:.4em;"|25-45  | ||
|style="padding:.4em;"|YR Jung  | |style="padding:.4em;"|YR Jung  | ||
| Line 103: | Line 103: | ||
[https://www.nature.com/articles/s41587-023-02079-x Disentanglement of single-cell data with biolord]  | [https://www.nature.com/articles/s41587-023-02079-x Disentanglement of single-cell data with biolord]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/6/20  | 
|style="padding:.4em;"|25-44  | |style="padding:.4em;"|25-44  | ||
|style="padding:.4em;"|YR Kim  | |style="padding:.4em;"|YR Kim  | ||
| Line 109: | Line 109: | ||
[https://www.science.org/doi/10.1126/science.ads0018 Simulating 500 million years of evolution with a language model]  | [https://www.science.org/doi/10.1126/science.ads0018 Simulating 500 million years of evolution with a language model]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/6/20  | 
|style="padding:.4em;"|25-43  | |style="padding:.4em;"|25-43  | ||
|style="padding:.4em;"|JY Kim  | |style="padding:.4em;"|JY Kim  | ||
| Line 115: | Line 115: | ||
[https://www.biorxiv.org/content/10.1101/2025.01.30.635558v1 GenomeOcean: An Efficient Genome Foundation Model Trained on Large-Scale Metagenomic Assemblies]  | [https://www.biorxiv.org/content/10.1101/2025.01.30.635558v1 GenomeOcean: An Efficient Genome Foundation Model Trained on Large-Scale Metagenomic Assemblies]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/6/13  | 
|style="padding:.4em;"|25-42  | |style="padding:.4em;"|25-42  | ||
|style="padding:.4em;"|WJ Kim  | |style="padding:.4em;"|WJ Kim  | ||
| Line 121: | Line 121: | ||
[https://www.nature.com/articles/s41467-025-56165-6 Predicting metabolite response to dietary intervention using deep learning]  | [https://www.nature.com/articles/s41467-025-56165-6 Predicting metabolite response to dietary intervention using deep learning]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/6/13  | 
|style="padding:.4em;"|25-41  | |style="padding:.4em;"|25-41  | ||
|style="padding:.4em;"|SH Ahn  | |style="padding:.4em;"|SH Ahn  | ||
| Line 127: | Line 127: | ||
[https://www.biorxiv.org/content/10.1101/2025.03.14.643159v1 Ultra-fast and highly sensitive protein structure alignment with segment-level representations and block-sparse optimization]  | [https://www.biorxiv.org/content/10.1101/2025.03.14.643159v1 Ultra-fast and highly sensitive protein structure alignment with segment-level representations and block-sparse optimization]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/5/  | + | |style="padding:.4em;" rowspan=1|2025/5/30  | 
|style="padding:.4em;"|25-40  | |style="padding:.4em;"|25-40  | ||
|style="padding:.4em;"|EJ Sung  | |style="padding:.4em;"|EJ Sung  | ||
| Line 133: | Line 133: | ||
[https://www.nature.com/articles/s41590-024-02059-6 Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age]  | [https://www.nature.com/articles/s41590-024-02059-6 Integrating single-cell RNA and T cell/B cell receptor sequencing with mass cytometry reveals dynamic trajectories of human peripheral immune cells from birth to old age]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/5/  | + | |style="padding:.4em;" rowspan=1|2025/5/30  | 
|style="padding:.4em;"|25-39  | |style="padding:.4em;"|25-39  | ||
|style="padding:.4em;"|HJ Kim  | |style="padding:.4em;"|HJ Kim  | ||
| Line 139: | Line 139: | ||
[https://pubmed.ncbi.nlm.nih.gov/39838963/ GOPhage: protein function annotation for bacteriophages by integrating the genomic context]  | [https://pubmed.ncbi.nlm.nih.gov/39838963/ GOPhage: protein function annotation for bacteriophages by integrating the genomic context]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/5/  | + | |style="padding:.4em;" rowspan=1|2025/5/23  | 
|style="padding:.4em;"|25-38  | |style="padding:.4em;"|25-38  | ||
|style="padding:.4em;"|JY Ma  | |style="padding:.4em;"|JY Ma  | ||
| Line 145: | Line 145: | ||
[https://www.nature.com/articles/s41592-024-02552-8 Orthology inference at scale with FastOMA]  | [https://www.nature.com/articles/s41592-024-02552-8 Orthology inference at scale with FastOMA]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/5/  | + | |style="padding:.4em;" rowspan=1|2025/5/23  | 
|style="padding:.4em;"|25-37  | |style="padding:.4em;"|25-37  | ||
|style="padding:.4em;"|JH Cha  | |style="padding:.4em;"|JH Cha  | ||
| Line 151: | Line 151: | ||
[https://www.nature.com/articles/s41588-025-02086-5 ImmuneLENS characterizes systemic immune dysregulation in aging and cancer]  | [https://www.nature.com/articles/s41588-025-02086-5 ImmuneLENS characterizes systemic immune dysregulation in aging and cancer]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/5/16  | 
|style="padding:.4em;"|25-36  | |style="padding:.4em;"|25-36  | ||
|style="padding:.4em;"|IS Choi  | |style="padding:.4em;"|IS Choi  | ||
| Line 157: | Line 157: | ||
[https://www.nature.com/articles/s41586-024-08453-2 Mapping cells through time and space with moscot]  | [https://www.nature.com/articles/s41586-024-08453-2 Mapping cells through time and space with moscot]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/5/16  | 
|style="padding:.4em;"|25-35  | |style="padding:.4em;"|25-35  | ||
|style="padding:.4em;"|NY Kim  | |style="padding:.4em;"|NY Kim  | ||
| Line 163: | Line 163: | ||
[https://www.biorxiv.org/content/10.1101/2025.02.05.636567v1 Human gut microbiota subspecies carry implicit information for in-depth microbiome research]  | [https://www.biorxiv.org/content/10.1101/2025.02.05.636567v1 Human gut microbiota subspecies carry implicit information for in-depth microbiome research]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/5/16  | 
|style="padding:.4em;"|25-34  | |style="padding:.4em;"|25-34  | ||
|style="padding:.4em;"|NY Kim  | |style="padding:.4em;"|NY Kim  | ||
| Line 169: | Line 169: | ||
[https://www.biorxiv.org/content/10.1101/2025.02.07.636498v1 Intraspecies associations from strain-rich metagenome sample]  | [https://www.biorxiv.org/content/10.1101/2025.02.07.636498v1 Intraspecies associations from strain-rich metagenome sample]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/5/09  | 
|style="padding:.4em;"|25-33  | |style="padding:.4em;"|25-33  | ||
|style="padding:.4em;"|SB Lim  | |style="padding:.4em;"|SB Lim  | ||
| Line 175: | Line 175: | ||
[https://doi.org/10.1101/2025.02.13.638109 Commonly used compositional data analysis implementations are not advantageous in microbial differential abundance analyses benchmarked against biological ground truth]  | [https://doi.org/10.1101/2025.02.13.638109 Commonly used compositional data analysis implementations are not advantageous in microbial differential abundance analyses benchmarked against biological ground truth]  | ||
|-  | |-  | ||
| − | |style="padding:.4em;" rowspan=1|2025/  | + | |style="padding:.4em;" rowspan=1|2025/5/09  | 
|style="padding:.4em;"|25-32  | |style="padding:.4em;"|25-32  | ||
|style="padding:.4em;"|HB Lee  | |style="padding:.4em;"|HB Lee  | ||
Revision as of 14:22, 7 April 2025
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2024/06/18 | Single-cell | 24-32 | EB Hong | 
 Spatial transcriptomics reveal neuron–astrocyte synergy in long-term memory  | 
| 2024/06/18 | Single-cell | 24-31 | JJ Heo | 
 scGNN is a novel graph neural network framework for single-cell RNA-Seq analyses  | 
| 2024/06/18 | Single-cell | 24-30 | SM Han | 
 Spatial transcriptomics of planktonic and sessile bacterial populations at single-cell resolution  | 
| 2024/06/18 | Single-cell | 24-29 | HJ Choi | |
| 2024/06/11 | Single-cell | 24-28 | SA Choi | |
| 2024/06/11 | Single-cell | 24-27 | HJ Cha | 
 Cell-type-specific responses to fungal infection in plants revealed by single-cell transcriptomics  | 
| 2024/06/11 | Single-cell | 24-26 | YK Jung | |
| 2024/06/11 | Single-cell | 24-25 | HJ Lee | |
| 2024/06/04 | Single-cell | 24-24 | HK Lee | 
 Delineating mouse β-cell identity during lifetime and in diabetes with a single cell atlas  | 
| 2024/06/04 | Single-cell | 24-23 | JI Lee | 
 Multimodal spatiotemporal phenotyping of human retinal organoid development  | 
| 2024/06/04 | Single-cell | 24-22 | JH Lee | |
| 2024/06/04 | Single-cell | 24-21 | JH Lee | 
 A single-cell analysis of the Arabidopsis vegetative shoot apex  | 
| 2024/05/28 | Single-cell | 24-20 | JH Lee | 
 Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq  | 
| 2024/05/28 | Single-cell | 24-19 | YH Lee | |
| 2024/05/28 | Single-cell | 24-18 | EB Yu | |
| 2024/05/28 | Single-cell | 24-17 | DY Won | 
 Spatial metatranscriptomics resolves host–bacteria–fungi interactomes  | 
| 2024/05/21 | Single-cell | 24-16 | SG Oh | |
| 2024/05/21 | Single-cell | 24-15 | SY Park | |
| 2024/05/21 | Single-cell | 24-14 | HS Moon | |
| 2024/05/21 | Single-cell | 24-13 | JH Nam | 
 Spatial cellular architecture predicts prognosis in glioblastoma  | 
| 2024/05/14 | Single-cell | 24-12 | HS Na | |
| 2024/05/14 | Single-cell | 24-11 | PK Kim | 
 Transcriptional adaptation of olfactory sensory neurons to GPCR identity and activity  | 
| 2024/05/14 | Single-cell | 24-10 | SH Kwon | |
| 2024/05/14 | Single-cell | 24-9 | Q Zhen | |
| 2024/05/07 | Single-cell | 24-8 | CR Leenaars | |
| 2024/05/07 | Single-cell | 24-7 | YR Kim | |
| 2024/05/07 | Single-cell | 24-6 | JY Kim | 
 Spatial transcriptomics landscape of lesions from non-communicable inflammatory skin diseases  | 
| 2024/05/07 | Single-cell | 24-5 | WJ Kim | 
 Neuregulin 4 suppresses NASH-HCC development by restraining tumor-prone liver microenvironment  | 
| 2024/04/23 | Single-cell | 24-4 | G Koh | 
 Single-nucleus multiregion transcriptomic analysis of brain vasculature in Alzheimer’s disease  | 
| 2024/04/23 | Single-cell | 24-3 | SH Ahn | |
| 2024/04/23 | Single-cell | 24-2 | EJ Sung | |
| 2024/04/23 | Single-cell | 24-1 | HJ Kim | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2023/08/30 | Single-cell | 23-24 | JW Yu | |
| 2023/08/09 | Single-cell | 23-23 | IS Choi | 
 Major data analysis errors invalidate cancer microbiome findings  | 
| 2023/08/02 | Single-cell | 23-22 | EJ Sung | |
| 2023/07/26 | Single-cell | 23-21 | G Koh | |
| 2023/07/19 | Single-cell | 23-20 | JW Yu | 
 Estimation of tumor cell total mRNA expression in 15 cancer types predicts disease progression  | 
| 2023/07/12 | Single-cell | 23-19 | JH Cha | 
 DIALOGUE maps multicellular programs in tissue from single-cell or spatial transcriptomics data  | 
| 2023/07/05 | Single-cell | 23-18 | SB Baek | 
 Pan-cancer T cell atlas links a cellular stress response state to immunotherapy resistance  | 
| 2023/06/28 | Single-cell | 23-17 | EJ Sung | |
| 2023/06/21 | Single-cell | 23-16 | IS Choi | |
| 2023/06/14 | Single-cell | 23-15 | G Koh | |
| 2023/05/31 | Single-cell | 23-14 | JW Yu | 
 Mutated processes predict immune checkpoint inhibitor therapy benefit in metastatic melanoma  | 
| 2023/05/24 | Single-cell | 23-13 | JH Cha | |
| 2023/05/17 | Single-cell | 23-12 | SB Baek | |
| 2023/05/10 | Single-cell | 23-11 | EJ Sung | 
 Supervised discovery of interpretable gene programs from single-cell data  | 
| 2023/05/03 | Single-cell | 23-10 | IS Choi | 
 Effect of the intratumoral microbiota on spatial and cellular heterogeneity in cancer  | 
| 2023/04/26 | Single-cell | 23-9 | G Koh | |
| 2023/03/22 | Single-cell | 23-8 | JW Yu | 
 MetaTiME: Meta-components of the Tumor Immune Microenvironment  | 
| 2023/03/08 | Single-cell | 23-7 | JH Cha | |
| 2023/02/21 | Single-cell | 23-6 | SB Baek | |
| 2023/02/14 | Single-cell | 23-5 | EJ Sung | 
 A T cell resilience model associated with response to immunotherapy in multiple tumor types  | 
| 2022/01/31 | Single-cell | 23-4 | IS Choi | |
| 2023/01/25 | Single-cell | 23-3 | G Koh | |
| 2023/01/17 | Single-cell | 23-2 | JW Yu | 
 Pan-cancer integrative histology-genomic analysis via multimodal deep learning  | 
| 2023/01/11 | Single-cell | 23-1 | JH Cha | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/11/23 | Single-cell | 21-39 | IS Choi | |
| 2021/11/16 | Single-cell | 21-38 | SB Back | |
| 2021/11/09 | Single-cell | 21-37 | JH Cha | |
| 2021/11/02 | Single-cell | 21-36 | SB Baek | 
 Functional Inference of Gene Regulation using Single-Cell Multi-Omics  | 
| 2021/10/26 | Single-cell | 21-35 | IS Choi | |
| 2021/10/19 | Single-cell | 21-34 | JH Cha | |
| 2021/10/05 | Single-cell | 21-33 | JH Cha | 
 Tumor and immune reprogramming during immunotherapy in advanced renal cell carcinoma  | 
| 2021/09/28 | Single-cell | 21-32 | SB Baek | |
| 2021/09/14 | Single-cell | 21-31 | IS Choi | |
| 2021/09/07 | Single-cell | 21-30 | JH Cha | 
 A single-cell map of intratumoral changes during anti-PD1 treatment of patients with breast cancer  | 
| 2021/08/31 | Single-cell | 21-29 | IS Choi | 
 Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma  | 
| 2021/08/24 | Single-cell | 21-28 | SB Baek | 
 Interpreting type 1 diabetes risk with genetics and single-cell epigenomics  | 
| Date | Team |  Paper index  | 
Presenter | Paper title | 
|---|---|---|---|---|
| 2021/02/22 | Single-cell | 21-8 | IS Choi | 
 Functional CRISPR dissection of gene networks controlling human regulatory T cell identity  | 
| 21-7 | JH Cha | 
 Molecular Pathways of Colon Inflammation Induced by Cancer Immunotherapy  | ||
| 2021/02/15 | Single-cell | 21-6 | SB Baek | |
| 21-5 | IS Choi | 
 Trajectory-based differential expression analysis for single-cell sequencing data  | ||
| 2021/02/08 | Single-cell | 21-4 | SB Baek | 
 Genetic determinants of co-accessible chromatin regions in activated T cells across humans  | 
| 21-3 | JH Cha | 
 Single-Cell Analyses Inform Mechanisms of Myeloid-Targeted Therapies in Colon Cancer  | ||
| 2021/02/01 | Single-cell | 21-2 | JW Cho | |
| 21-1 | JW Cho |